High‐Efficiency Single‐Photon Upconversion Photoluminescence of Perovskite Quantum Dots via Intragap State Regulation

Lead halide perovskite quantum dots (PQDs) have shown remarkable single‐photon upconversion photoluminescence (SPUC‐PL) bringing them a brilliant perspective as the active media for biological imaging, optiag, and upconversion photovoltaics. However, the mechanism of SPUC in PQDs is still in dispute...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced optical materials 2024-06, Vol.12 (16), p.n/a
Hauptverfasser: Gao, Jie, Sun, Yang, Wang, Xinli, Gao, Xiaowen, Li, Qi, Wang, Yi, Ai, Xi‐Cheng, Xu, Dongsheng, Zhang, Jian‐Ping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Lead halide perovskite quantum dots (PQDs) have shown remarkable single‐photon upconversion photoluminescence (SPUC‐PL) bringing them a brilliant perspective as the active media for biological imaging, optiag, and upconversion photovoltaics. However, the mechanism of SPUC in PQDs is still in dispute, and the specific strategy for optimizing PQDs toward a higher SPUC performance has yet to be established, which impedes the application of PQDs‐based SPUC‐PL in practice. In this work it is revealed that the PL quantum yield is declined by surface trap states, while the SPUC efficiency is promoted by Urbach tail states. These two types of intragap states can be chemically manipulated by engineering the surface ligand and the growth kinetics of perovskite nanocrystals, bringing on the improvement of light emission efficiency and the promotion of subgap low‐energy photon absorption, respectively. As a proof of concept, utilizing the synergistic effect of the proposed chemical manipulation method, the SPUC‐PL efficiency of PQDs is boosted by more than 40%, which gives rise to a spectral window of optical refrigeration gain as broad as ≈130 meV. High‐efficiency single‐photon upconversion photoluminescence of perovskite quantum dots is attained by chemically tailoring the specific distributions of two types of intragap states.
ISSN:2195-1071
2195-1071
DOI:10.1002/adom.202303022