The T-adic Galois representation is surjective for a positive density of Drinfeld modules

Let F q be the finite field with q ≥ 5 elements, A : = F q [ T ] and F : = F q ( T ) . Assume that q is odd and take | · | to be the absolute value at ∞ that is normalized by | T | = q . Given a pair w = ( g 1 , g 2 ) ∈ A 2 with g 2 ≠ 0 , consider the associated Drinfeld module ϕ w : A → A { τ } of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Research in number theory 2024-09, Vol.10 (3), Article 56
1. Verfasser: Ray, Anwesh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Research in number theory
container_volume 10
creator Ray, Anwesh
description Let F q be the finite field with q ≥ 5 elements, A : = F q [ T ] and F : = F q ( T ) . Assume that q is odd and take | · | to be the absolute value at ∞ that is normalized by | T | = q . Given a pair w = ( g 1 , g 2 ) ∈ A 2 with g 2 ≠ 0 , consider the associated Drinfeld module ϕ w : A → A { τ } of rank 2 defined by ϕ T w = T + g 1 τ + g 2 τ 2 . Fix integers c 1 , c 2 ≥ 1 and define | w | : = max { | g 1 | 1 c 1 , | g 2 | 1 c 2 } . I show that when ordered by height, there is a positive density of pairs w = ( g 1 , g 2 ) , such that the T -adic Galois representation attached to ϕ w is surjective.
doi_str_mv 10.1007/s40993-024-00541-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3064985685</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3064985685</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-804737d2b1d15617d648ffb02740ce7a07283f1e57aa38257cfa853e2bb8b4373</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOIzzB1wFXEdv3u1SxicMuBkXrkLaJtqh09SkFebfG6eCO1f33Ms558KH0CWFawqgb5KAsuQEmCAAUlCiTtCCccVJKaU8zVoyRoAqOEerlHYAWXPBGFugt-2Hw1tim7bGj7YLbcLRDdEl1492bEOP8yVNcefqsf1y2IeILR5Cao9r4_qsDjh4fBfb3ruuwfvQTJ1LF-jM2y651e9coteH--36iWxeHp_XtxtSM4CRFCA01w2raEOlorpRovC-AqYF1E5b0KzgnjqpreUFk7r2tpDcsaoqKsE1X6KruXeI4XNyaTS7MMU-vzQclCgLqbJ_idjsqmNIKTpvhtjubTwYCuaHopkpmkzRHCkalUN8DqVs7t9d_Kv-J_UNHMp0MA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3064985685</pqid></control><display><type>article</type><title>The T-adic Galois representation is surjective for a positive density of Drinfeld modules</title><source>SpringerLink Journals - AutoHoldings</source><creator>Ray, Anwesh</creator><creatorcontrib>Ray, Anwesh</creatorcontrib><description>Let F q be the finite field with q ≥ 5 elements, A : = F q [ T ] and F : = F q ( T ) . Assume that q is odd and take | · | to be the absolute value at ∞ that is normalized by | T | = q . Given a pair w = ( g 1 , g 2 ) ∈ A 2 with g 2 ≠ 0 , consider the associated Drinfeld module ϕ w : A → A { τ } of rank 2 defined by ϕ T w = T + g 1 τ + g 2 τ 2 . Fix integers c 1 , c 2 ≥ 1 and define | w | : = max { | g 1 | 1 c 1 , | g 2 | 1 c 2 } . I show that when ordered by height, there is a positive density of pairs w = ( g 1 , g 2 ) , such that the T -adic Galois representation attached to ϕ w is surjective.</description><identifier>ISSN: 2522-0160</identifier><identifier>EISSN: 2363-9555</identifier><identifier>DOI: 10.1007/s40993-024-00541-6</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Density ; Fields (mathematics) ; Mathematics ; Mathematics and Statistics ; Number Theory ; Representations</subject><ispartof>Research in number theory, 2024-09, Vol.10 (3), Article 56</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-804737d2b1d15617d648ffb02740ce7a07283f1e57aa38257cfa853e2bb8b4373</cites><orcidid>0000-0001-6946-1559</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40993-024-00541-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40993-024-00541-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ray, Anwesh</creatorcontrib><title>The T-adic Galois representation is surjective for a positive density of Drinfeld modules</title><title>Research in number theory</title><addtitle>Res. number theory</addtitle><description>Let F q be the finite field with q ≥ 5 elements, A : = F q [ T ] and F : = F q ( T ) . Assume that q is odd and take | · | to be the absolute value at ∞ that is normalized by | T | = q . Given a pair w = ( g 1 , g 2 ) ∈ A 2 with g 2 ≠ 0 , consider the associated Drinfeld module ϕ w : A → A { τ } of rank 2 defined by ϕ T w = T + g 1 τ + g 2 τ 2 . Fix integers c 1 , c 2 ≥ 1 and define | w | : = max { | g 1 | 1 c 1 , | g 2 | 1 c 2 } . I show that when ordered by height, there is a positive density of pairs w = ( g 1 , g 2 ) , such that the T -adic Galois representation attached to ϕ w is surjective.</description><subject>Density</subject><subject>Fields (mathematics)</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Number Theory</subject><subject>Representations</subject><issn>2522-0160</issn><issn>2363-9555</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOIzzB1wFXEdv3u1SxicMuBkXrkLaJtqh09SkFebfG6eCO1f33Ms558KH0CWFawqgb5KAsuQEmCAAUlCiTtCCccVJKaU8zVoyRoAqOEerlHYAWXPBGFugt-2Hw1tim7bGj7YLbcLRDdEl1492bEOP8yVNcefqsf1y2IeILR5Cao9r4_qsDjh4fBfb3ruuwfvQTJ1LF-jM2y651e9coteH--36iWxeHp_XtxtSM4CRFCA01w2raEOlorpRovC-AqYF1E5b0KzgnjqpreUFk7r2tpDcsaoqKsE1X6KruXeI4XNyaTS7MMU-vzQclCgLqbJ_idjsqmNIKTpvhtjubTwYCuaHopkpmkzRHCkalUN8DqVs7t9d_Kv-J_UNHMp0MA</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Ray, Anwesh</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6946-1559</orcidid></search><sort><creationdate>20240901</creationdate><title>The T-adic Galois representation is surjective for a positive density of Drinfeld modules</title><author>Ray, Anwesh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-804737d2b1d15617d648ffb02740ce7a07283f1e57aa38257cfa853e2bb8b4373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Density</topic><topic>Fields (mathematics)</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Number Theory</topic><topic>Representations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ray, Anwesh</creatorcontrib><collection>CrossRef</collection><jtitle>Research in number theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ray, Anwesh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The T-adic Galois representation is surjective for a positive density of Drinfeld modules</atitle><jtitle>Research in number theory</jtitle><stitle>Res. number theory</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>10</volume><issue>3</issue><artnum>56</artnum><issn>2522-0160</issn><eissn>2363-9555</eissn><abstract>Let F q be the finite field with q ≥ 5 elements, A : = F q [ T ] and F : = F q ( T ) . Assume that q is odd and take | · | to be the absolute value at ∞ that is normalized by | T | = q . Given a pair w = ( g 1 , g 2 ) ∈ A 2 with g 2 ≠ 0 , consider the associated Drinfeld module ϕ w : A → A { τ } of rank 2 defined by ϕ T w = T + g 1 τ + g 2 τ 2 . Fix integers c 1 , c 2 ≥ 1 and define | w | : = max { | g 1 | 1 c 1 , | g 2 | 1 c 2 } . I show that when ordered by height, there is a positive density of pairs w = ( g 1 , g 2 ) , such that the T -adic Galois representation attached to ϕ w is surjective.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40993-024-00541-6</doi><orcidid>https://orcid.org/0000-0001-6946-1559</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2522-0160
ispartof Research in number theory, 2024-09, Vol.10 (3), Article 56
issn 2522-0160
2363-9555
language eng
recordid cdi_proquest_journals_3064985685
source SpringerLink Journals - AutoHoldings
subjects Density
Fields (mathematics)
Mathematics
Mathematics and Statistics
Number Theory
Representations
title The T-adic Galois representation is surjective for a positive density of Drinfeld modules
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A59%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20T-adic%20Galois%20representation%20is%20surjective%20for%20a%20positive%20density%20of%20Drinfeld%20modules&rft.jtitle=Research%20in%20number%20theory&rft.au=Ray,%20Anwesh&rft.date=2024-09-01&rft.volume=10&rft.issue=3&rft.artnum=56&rft.issn=2522-0160&rft.eissn=2363-9555&rft_id=info:doi/10.1007/s40993-024-00541-6&rft_dat=%3Cproquest_cross%3E3064985685%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3064985685&rft_id=info:pmid/&rfr_iscdi=true