The T-adic Galois representation is surjective for a positive density of Drinfeld modules
Let F q be the finite field with q ≥ 5 elements, A : = F q [ T ] and F : = F q ( T ) . Assume that q is odd and take | · | to be the absolute value at ∞ that is normalized by | T | = q . Given a pair w = ( g 1 , g 2 ) ∈ A 2 with g 2 ≠ 0 , consider the associated Drinfeld module ϕ w : A → A { τ } of...
Gespeichert in:
Veröffentlicht in: | Research in number theory 2024-09, Vol.10 (3), Article 56 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
F
q
be the finite field with
q
≥
5
elements,
A
:
=
F
q
[
T
]
and
F
:
=
F
q
(
T
)
. Assume that
q
is odd and take
|
·
|
to be the absolute value at
∞
that is normalized by
|
T
|
=
q
. Given a pair
w
=
(
g
1
,
g
2
)
∈
A
2
with
g
2
≠
0
, consider the associated Drinfeld module
ϕ
w
:
A
→
A
{
τ
}
of rank 2 defined by
ϕ
T
w
=
T
+
g
1
τ
+
g
2
τ
2
. Fix integers
c
1
,
c
2
≥
1
and define
|
w
|
:
=
max
{
|
g
1
|
1
c
1
,
|
g
2
|
1
c
2
}
. I show that when ordered by height, there is a positive density of pairs
w
=
(
g
1
,
g
2
)
, such that the
T
-adic Galois representation attached to
ϕ
w
is surjective. |
---|---|
ISSN: | 2522-0160 2363-9555 |
DOI: | 10.1007/s40993-024-00541-6 |