Ramsey Numbers of Trees Versus Multiple Copies of Books
Given two graphs G and H , the Ramsey number R ( G,H ) is the minimum integer N such that any two-coloring of the edges of K N in red or blue yields a red G or a blue H . Let v ( G ) be the number of vertices of G and χ ( G ) be the chromatic number of G . Let s ( G ) denote the chromatic surplus of...
Gespeichert in:
Veröffentlicht in: | Acta Mathematicae Applicatae Sinica 2024, Vol.40 (3), p.600-612 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given two graphs
G
and
H
, the Ramsey number
R
(
G,H
) is the minimum integer
N
such that any two-coloring of the edges of
K
N
in red or blue yields a red
G
or a blue
H
. Let
v
(
G
) be the number of vertices of
G
and
χ
(
G
) be the chromatic number of
G
. Let
s
(
G
) denote the chromatic surplus of
G
, the number of vertices in a minimum color class among all proper
χ
(
G
)-colorings of
G
. Burr showed that
R
(
G
,
H
)
≥
(
v
(
G
)
−
1
)
(
χ
(
H
)
−
1
)
+
s
(
H
)
if
G
is connected and
v
(
G
)
≥
s
(
H
)
. A connected graph
G
is
H
-good if
R
(
G
,
H
)
=
(
v
(
G
)
−
1
)
(
χ
(
H
)
−
1
)
+
s
(
H
)
. Let
tH
denote the disjoint union of
t
copies of graph
H
, and let
G
∨
H
denote the join of
G
and
H
. Denote a complete graph on
n
vertices by
K
n
, and a tree on
n
vertices by
T
n
. Denote a book with
n
pages by
B
n
, i.e., the join
K
2
∨
K
n
¯
. Erdős, Faudree, Rousseau and Schelp proved that
T
n
is
B
m
-good if
n
≥
3
m
−
3
. In this paper, we obtain the exact Ramsey number of
T
n
versus 2
B
2
- Our result implies that
T
n
is 2
B
2
-good if
n
≥ 5. |
---|---|
ISSN: | 0168-9673 1618-3932 |
DOI: | 10.1007/s10255-024-1117-4 |