Counterexamples to the comparison principle in the special Lagrangian potential equation
For each k = 0 , ⋯ , n we construct a continuous phase f k , with f k ( 0 ) = ( n - 2 k ) π 2 , and viscosity sub- and supersolutions v k , u k , of the elliptic PDE ∑ i = 1 n arctan ( λ i ( H w ) ) = f k ( x ) such that v k - u k has an isolated maximum at the origin. It has been an open question w...
Gespeichert in:
Veröffentlicht in: | Calculus of variations and partial differential equations 2024-07, Vol.63 (6), Article 139 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For each
k
=
0
,
⋯
,
n
we construct a continuous
phase
f
k
, with
f
k
(
0
)
=
(
n
-
2
k
)
π
2
, and viscosity sub- and supersolutions
v
k
,
u
k
, of the elliptic PDE
∑
i
=
1
n
arctan
(
λ
i
(
H
w
)
)
=
f
k
(
x
)
such that
v
k
-
u
k
has an isolated maximum at the origin. It has been an open question whether the comparison principle would hold in this second order equation for arbitrary continuous phases
f
:
R
n
⊇
Ω
→
(
-
n
π
/
2
,
n
π
/
2
)
. Our examples show it does not. |
---|---|
ISSN: | 0944-2669 1432-0835 |
DOI: | 10.1007/s00526-024-02747-z |