A family of \(4\)-manifolds with nonnegative Ricci curvature and prescribed asymptotic cone

In this paper, we show that for any finite subgroup \(\Gamma < O(4)\) acting freely on \(\mathbb{S}^3\), there exists a \(4\)-dimensional complete Riemannian manifold \((M,g)\) with \({\rm Ric}_g \geq 0 \), such that the asymptotic cone of \((M,g)\) is \(C(\mathbb{S}_\delta^3 /\Gamma )\) for some...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-06
1. Verfasser: Zhou, Shengxuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we show that for any finite subgroup \(\Gamma < O(4)\) acting freely on \(\mathbb{S}^3\), there exists a \(4\)-dimensional complete Riemannian manifold \((M,g)\) with \({\rm Ric}_g \geq 0 \), such that the asymptotic cone of \((M,g)\) is \(C(\mathbb{S}_\delta^3 /\Gamma )\) for some \(\delta = \delta (\Gamma ) >0\). This answers a question of Bruè-Pigati-Semola [arXiv:2405.03839] about the topological obstructions of \(4\)-dimensional non-collapsed tangent cones. Combining this result with a recent work of Bruè-Pigati-Semola [arXiv:2405.03839], one can classify the \(4\)-dimensional non-collapsed tangent cone in the topological sense.
ISSN:2331-8422