Efficient FPGA implementation for sound source separation using direction-informed multichannel non-negative matrix factorization

Sound source separation (SSS) is a fundamental problem in audio signal processing, aiming to recover individual audio sources from a given mixture. A promising approach is multichannel non-negative matrix factorization (MNMF), which employs a Gaussian probabilistic model encoding both magnitude corr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of supercomputing 2024, Vol.80 (9), p.13411-13433
Hauptverfasser: Diel, Philipp, Muñoz-Montoro, Antonio J., Carabias-Orti, Julio J., Ranilla, Jose
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sound source separation (SSS) is a fundamental problem in audio signal processing, aiming to recover individual audio sources from a given mixture. A promising approach is multichannel non-negative matrix factorization (MNMF), which employs a Gaussian probabilistic model encoding both magnitude correlations and phase differences between channels through spatial covariance matrices (SCM). In this work, we present a dedicated hardware architecture implemented on field programmable gate arrays (FPGAs) for efficient SSS using MNMF-based techniques. A novel decorrelation constraint is presented to facilitate the factorization of the SCM signal model, tailored to the challenges of multichannel source separation. The performance of this FPGA-based approach is comprehensively evaluated, taking advantage of the flexibility and computational capabilities of FPGAs to create an efficient real-time source separation framework. Our experimental results demonstrate consistent, high-quality results in terms of sound separation.
ISSN:0920-8542
1573-0484
DOI:10.1007/s11227-024-05945-w