Space Time Method for Solving KdV and KdV-Burgers’ Equation

Korteweg-de Vries equation and KdV-Burgers’ equation are important nonlinear evolutionary equations widely used in engineering and mathematics. These equations have a nonlinear term which makes such problems very complex, thus, it is hard to obtain a high-precision numerical solution. This paper com...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mechanics of solids 2024-02, Vol.59 (1), p.268-279
Hauptverfasser: Cao, Yanhua, Wu, Xiaoran, Jia, Zhile
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Korteweg-de Vries equation and KdV-Burgers’ equation are important nonlinear evolutionary equations widely used in engineering and mathematics. These equations have a nonlinear term which makes such problems very complex, thus, it is hard to obtain a high-precision numerical solution. This paper compares the space-time polynomial particular solutions method (ST-MPPS) with the Fourier spectral method to solve the KdV and KdV-Burgers’ equation for different final time. Numerical experiments demonstrate that the space-time polynomial particular solutions method has high precision and robustness when solving dispersion and nonlinear scattering problems.
ISSN:0025-6544
1934-7936
DOI:10.1134/S0025654423602094