A characterization of the \(L^2\)-range of the generalized spectral projections related to the Hodge-de Rham Laplacian
Let \(H^n(\mathbb R)\) be the real hyperbolic space. In this paper, we present a characterization of the \(L^2\)-range of the generalized spectral projections on the bundle of differential forms over \(H^n(\mathbb R)\). As an underlying result we show a characterization of the \(L^2\)-range of the P...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-08 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let \(H^n(\mathbb R)\) be the real hyperbolic space. In this paper, we present a characterization of the \(L^2\)-range of the generalized spectral projections on the bundle of differential forms over \(H^n(\mathbb R)\). As an underlying result we show a characterization of the \(L^2\)-range of the Poisson transform on the bundle of differential forms on the boundary \(\partial H^n(\mathbb R)\). This gives a positive answer to a conjecture of Strichartz on differential forms. |
---|---|
ISSN: | 2331-8422 |