A characterization of the \(L^2\)-range of the generalized spectral projections related to the Hodge-de Rham Laplacian

Let \(H^n(\mathbb R)\) be the real hyperbolic space. In this paper, we present a characterization of the \(L^2\)-range of the generalized spectral projections on the bundle of differential forms over \(H^n(\mathbb R)\). As an underlying result we show a characterization of the \(L^2\)-range of the P...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-08
Hauptverfasser: Boussejra, Abdelhamid, Koufany, Khalid
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let \(H^n(\mathbb R)\) be the real hyperbolic space. In this paper, we present a characterization of the \(L^2\)-range of the generalized spectral projections on the bundle of differential forms over \(H^n(\mathbb R)\). As an underlying result we show a characterization of the \(L^2\)-range of the Poisson transform on the bundle of differential forms on the boundary \(\partial H^n(\mathbb R)\). This gives a positive answer to a conjecture of Strichartz on differential forms.
ISSN:2331-8422