Permanental inequalities for totally positive matrices
We characterize ratios of permanents of (generalized) submatrices which are bounded on the set of all totally positive matrices. This provides a permanental analog of results of Fallat, Gekhtman, and Johnson [{\em Adv.\ Appl.\ Math.} {\bf 30} no.\ 3, (2003) pp.\ 442--470] concerning ratios of matrix...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-06 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We characterize ratios of permanents of (generalized) submatrices which are bounded on the set of all totally positive matrices. This provides a permanental analog of results of Fallat, Gekhtman, and Johnson [{\em Adv.\ Appl.\ Math.} {\bf 30} no.\ 3, (2003) pp.\ 442--470] concerning ratios of matrix minors. We also extend work of Drake, Gerrish, and the first author [{\em Electron.\ J.\ Combin.,} {\bf 11} no.\ 1, (2004) Note 6] by characterizing the differences of monomials in \(\mathbb{Z}[x_{1,1},x_{1,2},...,x_{n,n}]\) which evaluate positively on the set of all totally positive \(n \times n\) matrices. |
---|---|
ISSN: | 2331-8422 |