From anisotropic Navier-Stokes equations to primitive equations for the ocean and atmosphere
We study the well-posedness of the primitive equations for the ocean and atmosphere on two particular domains : a bounded domain \(\Omega_1 := (-1, 1)^3\) with periodic boundary conditions and the strip \(\Omega_2 := \mathbb{R}^2 \times (-1, 1)\) with a periodic boundary condition for the vertical c...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-06 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the well-posedness of the primitive equations for the ocean and atmosphere on two particular domains : a bounded domain \(\Omega_1 := (-1, 1)^3\) with periodic boundary conditions and the strip \(\Omega_2 := \mathbb{R}^2 \times (-1, 1)\) with a periodic boundary condition for the vertical coordinate. An existence theorem for global solutions on a suitable Besov space is derived. Then, in a second step, we rigorously justify the passage to the limit from the rescaled anisotropic Navier-Stokes equations to these primitive equations in the same functional framework as that found for the solutions of the primitive equations. |
---|---|
ISSN: | 2331-8422 |