From anisotropic Navier-Stokes equations to primitive equations for the ocean and atmosphere

We study the well-posedness of the primitive equations for the ocean and atmosphere on two particular domains : a bounded domain \(\Omega_1 := (-1, 1)^3\) with periodic boundary conditions and the strip \(\Omega_2 := \mathbb{R}^2 \times (-1, 1)\) with a periodic boundary condition for the vertical c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-06
1. Verfasser: Lemarié, Valentin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the well-posedness of the primitive equations for the ocean and atmosphere on two particular domains : a bounded domain \(\Omega_1 := (-1, 1)^3\) with periodic boundary conditions and the strip \(\Omega_2 := \mathbb{R}^2 \times (-1, 1)\) with a periodic boundary condition for the vertical coordinate. An existence theorem for global solutions on a suitable Besov space is derived. Then, in a second step, we rigorously justify the passage to the limit from the rescaled anisotropic Navier-Stokes equations to these primitive equations in the same functional framework as that found for the solutions of the primitive equations.
ISSN:2331-8422