On Nilpotent-invariant One-sided Ideals

The notion of a nilpotent-invariant module was introduced and thoroughly investigated in Koşan and Quynh (Comm. Algebra 45 , 2775–2782 2017 ) as a proper extension of an automorphism-invariant module. In this paper a ring is called a right n -ring if every right ideal is nilpotent-invariant. We show...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mathematica vietnamica 2024, Vol.49 (1), p.115-128
Hauptverfasser: Quynh, Truong Cong, Van, Truong Thi Thuy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 128
container_issue 1
container_start_page 115
container_title Acta mathematica vietnamica
container_volume 49
creator Quynh, Truong Cong
Van, Truong Thi Thuy
description The notion of a nilpotent-invariant module was introduced and thoroughly investigated in Koşan and Quynh (Comm. Algebra 45 , 2775–2782 2017 ) as a proper extension of an automorphism-invariant module. In this paper a ring is called a right n -ring if every right ideal is nilpotent-invariant. We show that a right n -ring is the direct sum of a square full semisimple artinian ring and a right square-free ring. Moreover, right n -rings are shown to be stably finite, and if the ring is also an exchange ring then it satisfies the substitution property, has stable range 1. These results are non-trivial extensions of similar ones on rings every right ideal is automorphism-invariant.
doi_str_mv 10.1007/s40306-024-00524-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3064182601</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3064182601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-9067d37469e56a33103143b31beaa499be62dd5638191214e7e630930bbbc0933</originalsourceid><addsrcrecordid>eNp9ULtOAzEQtBBIRCE_QBWJgsqw6_XZuRJFPCJFpIHasnMbdCj4gn0h4u8xHBIdzc4WM7M7I8Q5whUC2OusgcBIUFoCVGUejsRIEVZSo9bHYgSqwrLP9KmY5NwGQLIG7KwaictVnD62213Xc-xlGz98an3sp6vIMrcNN9NFw36bz8TJpgBPfnEsnu9un-YPcrm6X8xvlnKtLPSyBmMbstrUXBlPhECoKRAG9l7XdWCjmqYyNMMaFWq2bAhqghDCuiCNxcXgu0vd-55z7167fYrlpCsZSwZlyvdjoQbWOnU5J964XWrffPp0CO67Ezd04kon7qcTdygiGkS5kOMLpz_rf1RfuHlheA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3064182601</pqid></control><display><type>article</type><title>On Nilpotent-invariant One-sided Ideals</title><source>SpringerLink (Online service)</source><creator>Quynh, Truong Cong ; Van, Truong Thi Thuy</creator><creatorcontrib>Quynh, Truong Cong ; Van, Truong Thi Thuy</creatorcontrib><description>The notion of a nilpotent-invariant module was introduced and thoroughly investigated in Koşan and Quynh (Comm. Algebra 45 , 2775–2782 2017 ) as a proper extension of an automorphism-invariant module. In this paper a ring is called a right n -ring if every right ideal is nilpotent-invariant. We show that a right n -ring is the direct sum of a square full semisimple artinian ring and a right square-free ring. Moreover, right n -rings are shown to be stably finite, and if the ring is also an exchange ring then it satisfies the substitution property, has stable range 1. These results are non-trivial extensions of similar ones on rings every right ideal is automorphism-invariant.</description><identifier>ISSN: 0251-4184</identifier><identifier>EISSN: 2315-4144</identifier><identifier>DOI: 10.1007/s40306-024-00524-w</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>Automorphisms ; Invariants ; Mathematics ; Mathematics and Statistics ; Modules ; Rings (mathematics)</subject><ispartof>Acta mathematica vietnamica, 2024, Vol.49 (1), p.115-128</ispartof><rights>Institute of Mathematics, Vietnam Academy of Science and Technology (VAST) and Springer Nature Singapore Pte Ltd. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-9067d37469e56a33103143b31beaa499be62dd5638191214e7e630930bbbc0933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40306-024-00524-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40306-024-00524-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Quynh, Truong Cong</creatorcontrib><creatorcontrib>Van, Truong Thi Thuy</creatorcontrib><title>On Nilpotent-invariant One-sided Ideals</title><title>Acta mathematica vietnamica</title><addtitle>Acta Math Vietnam</addtitle><description>The notion of a nilpotent-invariant module was introduced and thoroughly investigated in Koşan and Quynh (Comm. Algebra 45 , 2775–2782 2017 ) as a proper extension of an automorphism-invariant module. In this paper a ring is called a right n -ring if every right ideal is nilpotent-invariant. We show that a right n -ring is the direct sum of a square full semisimple artinian ring and a right square-free ring. Moreover, right n -rings are shown to be stably finite, and if the ring is also an exchange ring then it satisfies the substitution property, has stable range 1. These results are non-trivial extensions of similar ones on rings every right ideal is automorphism-invariant.</description><subject>Automorphisms</subject><subject>Invariants</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Modules</subject><subject>Rings (mathematics)</subject><issn>0251-4184</issn><issn>2315-4144</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9ULtOAzEQtBBIRCE_QBWJgsqw6_XZuRJFPCJFpIHasnMbdCj4gn0h4u8xHBIdzc4WM7M7I8Q5whUC2OusgcBIUFoCVGUejsRIEVZSo9bHYgSqwrLP9KmY5NwGQLIG7KwaictVnD62213Xc-xlGz98an3sp6vIMrcNN9NFw36bz8TJpgBPfnEsnu9un-YPcrm6X8xvlnKtLPSyBmMbstrUXBlPhECoKRAG9l7XdWCjmqYyNMMaFWq2bAhqghDCuiCNxcXgu0vd-55z7167fYrlpCsZSwZlyvdjoQbWOnU5J964XWrffPp0CO67Ezd04kon7qcTdygiGkS5kOMLpz_rf1RfuHlheA</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Quynh, Truong Cong</creator><creator>Van, Truong Thi Thuy</creator><general>Springer Nature Singapore</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2024</creationdate><title>On Nilpotent-invariant One-sided Ideals</title><author>Quynh, Truong Cong ; Van, Truong Thi Thuy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-9067d37469e56a33103143b31beaa499be62dd5638191214e7e630930bbbc0933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Automorphisms</topic><topic>Invariants</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Modules</topic><topic>Rings (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quynh, Truong Cong</creatorcontrib><creatorcontrib>Van, Truong Thi Thuy</creatorcontrib><collection>CrossRef</collection><jtitle>Acta mathematica vietnamica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Quynh, Truong Cong</au><au>Van, Truong Thi Thuy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Nilpotent-invariant One-sided Ideals</atitle><jtitle>Acta mathematica vietnamica</jtitle><stitle>Acta Math Vietnam</stitle><date>2024</date><risdate>2024</risdate><volume>49</volume><issue>1</issue><spage>115</spage><epage>128</epage><pages>115-128</pages><issn>0251-4184</issn><eissn>2315-4144</eissn><abstract>The notion of a nilpotent-invariant module was introduced and thoroughly investigated in Koşan and Quynh (Comm. Algebra 45 , 2775–2782 2017 ) as a proper extension of an automorphism-invariant module. In this paper a ring is called a right n -ring if every right ideal is nilpotent-invariant. We show that a right n -ring is the direct sum of a square full semisimple artinian ring and a right square-free ring. Moreover, right n -rings are shown to be stably finite, and if the ring is also an exchange ring then it satisfies the substitution property, has stable range 1. These results are non-trivial extensions of similar ones on rings every right ideal is automorphism-invariant.</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><doi>10.1007/s40306-024-00524-w</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0251-4184
ispartof Acta mathematica vietnamica, 2024, Vol.49 (1), p.115-128
issn 0251-4184
2315-4144
language eng
recordid cdi_proquest_journals_3064182601
source SpringerLink (Online service)
subjects Automorphisms
Invariants
Mathematics
Mathematics and Statistics
Modules
Rings (mathematics)
title On Nilpotent-invariant One-sided Ideals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T21%3A11%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Nilpotent-invariant%20One-sided%20Ideals&rft.jtitle=Acta%20mathematica%20vietnamica&rft.au=Quynh,%20Truong%20Cong&rft.date=2024&rft.volume=49&rft.issue=1&rft.spage=115&rft.epage=128&rft.pages=115-128&rft.issn=0251-4184&rft.eissn=2315-4144&rft_id=info:doi/10.1007/s40306-024-00524-w&rft_dat=%3Cproquest_cross%3E3064182601%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3064182601&rft_id=info:pmid/&rfr_iscdi=true