On Nilpotent-invariant One-sided Ideals

The notion of a nilpotent-invariant module was introduced and thoroughly investigated in Koşan and Quynh (Comm. Algebra 45 , 2775–2782 2017 ) as a proper extension of an automorphism-invariant module. In this paper a ring is called a right n -ring if every right ideal is nilpotent-invariant. We show...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mathematica vietnamica 2024, Vol.49 (1), p.115-128
Hauptverfasser: Quynh, Truong Cong, Van, Truong Thi Thuy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The notion of a nilpotent-invariant module was introduced and thoroughly investigated in Koşan and Quynh (Comm. Algebra 45 , 2775–2782 2017 ) as a proper extension of an automorphism-invariant module. In this paper a ring is called a right n -ring if every right ideal is nilpotent-invariant. We show that a right n -ring is the direct sum of a square full semisimple artinian ring and a right square-free ring. Moreover, right n -rings are shown to be stably finite, and if the ring is also an exchange ring then it satisfies the substitution property, has stable range 1. These results are non-trivial extensions of similar ones on rings every right ideal is automorphism-invariant.
ISSN:0251-4184
2315-4144
DOI:10.1007/s40306-024-00524-w