Multi-functional molecule advancing the efficiency of pure 3D FASnI3 perovskite solar cells based on the tin tetraiodide reduction method

Tin halide perovskite solar cells (PSCs) show promise as lead-free photovoltaic alternatives, but face challenges due to Sn2+ oxidation and crystallization control issues. We introduce a novel method to enhance PSC performance: by reducing tin tetraiodide with elemental tin, we produce a highly reac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2024-06, Vol.12 (22), p.13097-13105
Hauptverfasser: Li, Hao, Shi, Haoyu, Tan, Qin, Chen, Guocong, Wang, Jiafeng, Ma, Guoqiang, He, Dong, Cheng, Tianle, Gao, Han, Lamberti, Francesco, He, Zhubing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Tin halide perovskite solar cells (PSCs) show promise as lead-free photovoltaic alternatives, but face challenges due to Sn2+ oxidation and crystallization control issues. We introduce a novel method to enhance PSC performance: by reducing tin tetraiodide with elemental tin, we produce a highly reactive Sn2+ precursor solution, yielding perovskite films with improved crystallinity, smoother surfaces, and reduced Sn4+ residue. Additionally, we incorporate phenylhydrazine-4-sulfonic acid (PHPA) as an additive to further enhance film quality. PHPA synergically forms hydrogen bonds with formamidinium cations (FA+) and coordinates with Sn2+ to inhibit its oxidation, reducing defective states within the film. This results in an FASnI3 perovskite device achieving a remarkable PCE of 12.22%. Notably, the device maintains 80% of its initial PCE after 200 h under light-soaking. Our approach offers a reproducible method for fabricating high-performance and stable tin halide PSCs, addressing key challenges and advancing sustainable energy solutions.
ISSN:2050-7488
2050-7496
DOI:10.1039/d4ta01783h