Recent advances and perspectives of practical modifications of vanadium redox flow battery electrodes
In order to develop intermittent renewable energy sources, the development of energy storage systems (ESSs) has become a research hotspot, but high capital and operating costs remain their main drawbacks. Vanadium redox flow batteries (VRFBs) have emerged as promising large-scale electrochemical EES...
Gespeichert in:
Veröffentlicht in: | Green chemistry : an international journal and green chemistry resource : GC 2024-06, Vol.26 (11), p.6339-636 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In order to develop intermittent renewable energy sources, the development of energy storage systems (ESSs) has become a research hotspot, but high capital and operating costs remain their main drawbacks. Vanadium redox flow batteries (VRFBs) have emerged as promising large-scale electrochemical EESs due to their environmental friendliness, persistent durability, and commercial value advantages. Significant efforts have been devoted to VRFB electrode modification to improve their economic applicability and electrochemical performance while retaining environmental friendliness. In this review, the progress of VRFBs' electrode treatment is summarized from the practical perspective. Considering the commercial prospects, this review provides an overview of these treatments for VRFB electrodes in terms of environmental friendliness, economic applicability, and electrochemical performance, which can be referred to as the "3Es". The advantages and disadvantages of each processing method are analyzed with "3Es" as the standard, which provides a reference for the large-scale commercialization process of VRFBs. In the end, practical recommendations are put forward on the relationship between the development plan and the objectives of VRFB.
Electrode modification of VRFB with "3Es". |
---|---|
ISSN: | 1463-9262 1463-9270 |
DOI: | 10.1039/d4gc00584h |