Breast cancer diagnosis through an optimization‐driven multispectral gamma correction ( ODMGC )

The Optimization‐Driven Multispectral Gamma Correction (ODMGC) algorithm overcomes challenges in gathering subtle information and detecting cancer in dense breast thermograms. This algorithm enhances the accuracy of true positives and true negatives while minimising false negatives and false positiv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of adaptive control and signal processing 2024-06, Vol.38 (6), p.2178-2199
Hauptverfasser: A, Arul Edwin Raj, Ahmad, Nabihah Binti, S, Ananiah Durai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Optimization‐Driven Multispectral Gamma Correction (ODMGC) algorithm overcomes challenges in gathering subtle information and detecting cancer in dense breast thermograms. This algorithm enhances the accuracy of true positives and true negatives while minimising false negatives and false positives. The ODMGC involves a multi‐step optimisation process that categorises grey‐scale images of breast thermograms based on mean brightness. Then, based on the grey levels of the pixels, we grouped each categorisation into sub‐regions. Followed by each group has undergone individually optimised base enhancement. This process enhances the contrast between cancerous and normal tissues, eliminates over‐ and under‐enhancement, and supports breast tumour diagnosis. The optimised‐based enhancement images serve as a reference point for the histogram specification of the V component of the thermograms in the HSV (Hue, Saturation, and Value) model. Further, we evaluated the proposed model using both qualitative and quantitative measures. Finally, using dimension‐reduced significant Grey‐Level Co‐occurrence Matrix (GLCM) features, we validated the results with a Random Forest (RF) classifier. The algorithm was successfully implemented in MATLAB 2020a, and the classifier was developed in Jupyter Notebook using Python. The subjective comparison confirmed the proposed method's superior resolution in normal and malignant cases. The classifier results showed an accuracy of 96.4%, sensitivity of 98.1%, and specificity of 96.9%.
ISSN:0890-6327
1099-1115
DOI:10.1002/acs.3798