Lambda-invariants of Mazur–Tate elements attached to Ramanujan’s tau function and congruences with Eisenstein series
Let p ∈ { 3 , 5 , 7 } and let Δ denote the weight twelve modular form arising from Ramanujan’s tau function. We show that Δ is congruent to an Eisenstein series E k , χ , ψ modulo p for explicit choices of k and Dirichlet characters χ and ψ . We then prove formulae describing the Iwasawa invariants...
Gespeichert in:
Veröffentlicht in: | Research in number theory 2024, Vol.10 (2) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
p
∈
{
3
,
5
,
7
}
and let
Δ
denote the weight twelve modular form arising from Ramanujan’s tau function. We show that
Δ
is congruent to an Eisenstein series
E
k
,
χ
,
ψ
modulo
p
for explicit choices of
k
and Dirichlet characters
χ
and
ψ
. We then prove formulae describing the Iwasawa invariants of the Mazur–Tate elements attached to
Δ
, confirming numerical data gathered by the authors in a previous work. |
---|---|
ISSN: | 2522-0160 2363-9555 |
DOI: | 10.1007/s40993-024-00540-7 |