Family of phase fitted 3-step second-order BDF methods for solving periodic and orbital quantum chemistry problems
In this paper, we introduce a novel series of second-order Backward Differentiation Formulas (BDFs) specifically designed to address phase-lag and its first derivative in the numerical resolution of Initial Value Problems (IVPs) with orbital solutions. Our methodology commences with an in-depth anal...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical chemistry 2024, Vol.62 (6), p.1223-1250 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1250 |
---|---|
container_issue | 6 |
container_start_page | 1223 |
container_title | Journal of mathematical chemistry |
container_volume | 62 |
creator | Saadat, Hosein Kiyadeh, Sanaz Hami Hassan Karim, Ramin Goudarzi Safaie, Ali |
description | In this paper, we introduce a novel series of second-order Backward Differentiation Formulas (BDFs) specifically designed to address phase-lag and its first derivative in the numerical resolution of Initial Value Problems (IVPs) with orbital solutions. Our methodology commences with an in-depth analysis of phase-lag phenomena associated with second-order BDFs. Following this, we construct a suite of equations by embedding algebraic functions into the operational framework of the 3-step second-order BDF (SOBDF) method. Additionally, we elaborate on equations that precisely describe the phase-lag and its derivatives, with a concentrated focus on the 3-step SOBDF method. The culmination of this work is the presentation of six distinct methods, each methodically crafted to negate both the real and imaginary elements of phase-lag and its derivatives in numerical computations. The study advances with a meticulous examination of the local truncation error and the stability regions pertinent to the six phase-fitted methods introduced. Furthermore, we scrutinize their computational performance by deploying these methods across a spectrum of initial value problems, offering valuable insights into their effectiveness in varying contexts. |
doi_str_mv | 10.1007/s10910-024-01619-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3062886070</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3062886070</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-bdd9909a87e98f9d7bc764ff50277083b45c86f6bd4c19385f75086b93bf70193</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AVcB19GbvpIsdXRUGHCj69C8Zjq0TSdJhfn3Viu4c3Xhcr5z4EPomsItBWB3kYKgQCArCNCKCpKfoAUtWUY4F-wULSArBRFM0HN0EeMeAASv-AKFdd017RF7h4ddHS12TUrW4JzEZAccrfa9IT4YG_DD4xp3Nu28idj5gKNvP5t-iwcbGm8ajeveYB9Uk-oWH8a6T2OH9c52TUzhiIfgVWu7eInOXN1Ge_V7l-hj_fS-eiGbt-fX1f2G6IxBIsoYIUDUnFnBnTBMaVYVzpWQMQY8V0WpeeUqZQpNRc5Lx0rglRK5cgymzxLdzL3T8GG0Mcm9H0M_TcocqozzChhMqWxO6eBjDNbJITRdHY6Sgvx2K2e3cnIrf9zKfILyGYpTuN_a8Ff9D_UFVft9CQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3062886070</pqid></control><display><type>article</type><title>Family of phase fitted 3-step second-order BDF methods for solving periodic and orbital quantum chemistry problems</title><source>SpringerNature Journals</source><creator>Saadat, Hosein ; Kiyadeh, Sanaz Hami Hassan ; Karim, Ramin Goudarzi ; Safaie, Ali</creator><creatorcontrib>Saadat, Hosein ; Kiyadeh, Sanaz Hami Hassan ; Karim, Ramin Goudarzi ; Safaie, Ali</creatorcontrib><description>In this paper, we introduce a novel series of second-order Backward Differentiation Formulas (BDFs) specifically designed to address phase-lag and its first derivative in the numerical resolution of Initial Value Problems (IVPs) with orbital solutions. Our methodology commences with an in-depth analysis of phase-lag phenomena associated with second-order BDFs. Following this, we construct a suite of equations by embedding algebraic functions into the operational framework of the 3-step second-order BDF (SOBDF) method. Additionally, we elaborate on equations that precisely describe the phase-lag and its derivatives, with a concentrated focus on the 3-step SOBDF method. The culmination of this work is the presentation of six distinct methods, each methodically crafted to negate both the real and imaginary elements of phase-lag and its derivatives in numerical computations. The study advances with a meticulous examination of the local truncation error and the stability regions pertinent to the six phase-fitted methods introduced. Furthermore, we scrutinize their computational performance by deploying these methods across a spectrum of initial value problems, offering valuable insights into their effectiveness in varying contexts.</description><identifier>ISSN: 0259-9791</identifier><identifier>EISSN: 1572-8897</identifier><identifier>DOI: 10.1007/s10910-024-01619-3</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Boundary value problems ; Chemistry ; Chemistry and Materials Science ; Derivatives ; Math. Applications in Chemistry ; Mathematical analysis ; Phase lag ; Physical Chemistry ; Quantum chemistry ; Review ; Theoretical and Computational Chemistry ; Truncation errors</subject><ispartof>Journal of mathematical chemistry, 2024, Vol.62 (6), p.1223-1250</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-bdd9909a87e98f9d7bc764ff50277083b45c86f6bd4c19385f75086b93bf70193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10910-024-01619-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10910-024-01619-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27933,27934,41497,42566,51328</link.rule.ids></links><search><creatorcontrib>Saadat, Hosein</creatorcontrib><creatorcontrib>Kiyadeh, Sanaz Hami Hassan</creatorcontrib><creatorcontrib>Karim, Ramin Goudarzi</creatorcontrib><creatorcontrib>Safaie, Ali</creatorcontrib><title>Family of phase fitted 3-step second-order BDF methods for solving periodic and orbital quantum chemistry problems</title><title>Journal of mathematical chemistry</title><addtitle>J Math Chem</addtitle><description>In this paper, we introduce a novel series of second-order Backward Differentiation Formulas (BDFs) specifically designed to address phase-lag and its first derivative in the numerical resolution of Initial Value Problems (IVPs) with orbital solutions. Our methodology commences with an in-depth analysis of phase-lag phenomena associated with second-order BDFs. Following this, we construct a suite of equations by embedding algebraic functions into the operational framework of the 3-step second-order BDF (SOBDF) method. Additionally, we elaborate on equations that precisely describe the phase-lag and its derivatives, with a concentrated focus on the 3-step SOBDF method. The culmination of this work is the presentation of six distinct methods, each methodically crafted to negate both the real and imaginary elements of phase-lag and its derivatives in numerical computations. The study advances with a meticulous examination of the local truncation error and the stability regions pertinent to the six phase-fitted methods introduced. Furthermore, we scrutinize their computational performance by deploying these methods across a spectrum of initial value problems, offering valuable insights into their effectiveness in varying contexts.</description><subject>Boundary value problems</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Derivatives</subject><subject>Math. Applications in Chemistry</subject><subject>Mathematical analysis</subject><subject>Phase lag</subject><subject>Physical Chemistry</subject><subject>Quantum chemistry</subject><subject>Review</subject><subject>Theoretical and Computational Chemistry</subject><subject>Truncation errors</subject><issn>0259-9791</issn><issn>1572-8897</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-AVcB19GbvpIsdXRUGHCj69C8Zjq0TSdJhfn3Viu4c3Xhcr5z4EPomsItBWB3kYKgQCArCNCKCpKfoAUtWUY4F-wULSArBRFM0HN0EeMeAASv-AKFdd017RF7h4ddHS12TUrW4JzEZAccrfa9IT4YG_DD4xp3Nu28idj5gKNvP5t-iwcbGm8ajeveYB9Uk-oWH8a6T2OH9c52TUzhiIfgVWu7eInOXN1Ge_V7l-hj_fS-eiGbt-fX1f2G6IxBIsoYIUDUnFnBnTBMaVYVzpWQMQY8V0WpeeUqZQpNRc5Lx0rglRK5cgymzxLdzL3T8GG0Mcm9H0M_TcocqozzChhMqWxO6eBjDNbJITRdHY6Sgvx2K2e3cnIrf9zKfILyGYpTuN_a8Ff9D_UFVft9CQ</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Saadat, Hosein</creator><creator>Kiyadeh, Sanaz Hami Hassan</creator><creator>Karim, Ramin Goudarzi</creator><creator>Safaie, Ali</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2024</creationdate><title>Family of phase fitted 3-step second-order BDF methods for solving periodic and orbital quantum chemistry problems</title><author>Saadat, Hosein ; Kiyadeh, Sanaz Hami Hassan ; Karim, Ramin Goudarzi ; Safaie, Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-bdd9909a87e98f9d7bc764ff50277083b45c86f6bd4c19385f75086b93bf70193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Boundary value problems</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Derivatives</topic><topic>Math. Applications in Chemistry</topic><topic>Mathematical analysis</topic><topic>Phase lag</topic><topic>Physical Chemistry</topic><topic>Quantum chemistry</topic><topic>Review</topic><topic>Theoretical and Computational Chemistry</topic><topic>Truncation errors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saadat, Hosein</creatorcontrib><creatorcontrib>Kiyadeh, Sanaz Hami Hassan</creatorcontrib><creatorcontrib>Karim, Ramin Goudarzi</creatorcontrib><creatorcontrib>Safaie, Ali</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saadat, Hosein</au><au>Kiyadeh, Sanaz Hami Hassan</au><au>Karim, Ramin Goudarzi</au><au>Safaie, Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Family of phase fitted 3-step second-order BDF methods for solving periodic and orbital quantum chemistry problems</atitle><jtitle>Journal of mathematical chemistry</jtitle><stitle>J Math Chem</stitle><date>2024</date><risdate>2024</risdate><volume>62</volume><issue>6</issue><spage>1223</spage><epage>1250</epage><pages>1223-1250</pages><issn>0259-9791</issn><eissn>1572-8897</eissn><abstract>In this paper, we introduce a novel series of second-order Backward Differentiation Formulas (BDFs) specifically designed to address phase-lag and its first derivative in the numerical resolution of Initial Value Problems (IVPs) with orbital solutions. Our methodology commences with an in-depth analysis of phase-lag phenomena associated with second-order BDFs. Following this, we construct a suite of equations by embedding algebraic functions into the operational framework of the 3-step second-order BDF (SOBDF) method. Additionally, we elaborate on equations that precisely describe the phase-lag and its derivatives, with a concentrated focus on the 3-step SOBDF method. The culmination of this work is the presentation of six distinct methods, each methodically crafted to negate both the real and imaginary elements of phase-lag and its derivatives in numerical computations. The study advances with a meticulous examination of the local truncation error and the stability regions pertinent to the six phase-fitted methods introduced. Furthermore, we scrutinize their computational performance by deploying these methods across a spectrum of initial value problems, offering valuable insights into their effectiveness in varying contexts.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10910-024-01619-3</doi><tpages>28</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0259-9791 |
ispartof | Journal of mathematical chemistry, 2024, Vol.62 (6), p.1223-1250 |
issn | 0259-9791 1572-8897 |
language | eng |
recordid | cdi_proquest_journals_3062886070 |
source | SpringerNature Journals |
subjects | Boundary value problems Chemistry Chemistry and Materials Science Derivatives Math. Applications in Chemistry Mathematical analysis Phase lag Physical Chemistry Quantum chemistry Review Theoretical and Computational Chemistry Truncation errors |
title | Family of phase fitted 3-step second-order BDF methods for solving periodic and orbital quantum chemistry problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T07%3A47%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Family%20of%20phase%20fitted%203-step%20second-order%20BDF%20methods%20for%20solving%20periodic%20and%20orbital%20quantum%20chemistry%20problems&rft.jtitle=Journal%20of%20mathematical%20chemistry&rft.au=Saadat,%20Hosein&rft.date=2024&rft.volume=62&rft.issue=6&rft.spage=1223&rft.epage=1250&rft.pages=1223-1250&rft.issn=0259-9791&rft.eissn=1572-8897&rft_id=info:doi/10.1007/s10910-024-01619-3&rft_dat=%3Cproquest_cross%3E3062886070%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3062886070&rft_id=info:pmid/&rfr_iscdi=true |