Family of phase fitted 3-step second-order BDF methods for solving periodic and orbital quantum chemistry problems

In this paper, we introduce a novel series of second-order Backward Differentiation Formulas (BDFs) specifically designed to address phase-lag and its first derivative in the numerical resolution of Initial Value Problems (IVPs) with orbital solutions. Our methodology commences with an in-depth anal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical chemistry 2024, Vol.62 (6), p.1223-1250
Hauptverfasser: Saadat, Hosein, Kiyadeh, Sanaz Hami Hassan, Karim, Ramin Goudarzi, Safaie, Ali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1250
container_issue 6
container_start_page 1223
container_title Journal of mathematical chemistry
container_volume 62
creator Saadat, Hosein
Kiyadeh, Sanaz Hami Hassan
Karim, Ramin Goudarzi
Safaie, Ali
description In this paper, we introduce a novel series of second-order Backward Differentiation Formulas (BDFs) specifically designed to address phase-lag and its first derivative in the numerical resolution of Initial Value Problems (IVPs) with orbital solutions. Our methodology commences with an in-depth analysis of phase-lag phenomena associated with second-order BDFs. Following this, we construct a suite of equations by embedding algebraic functions into the operational framework of the 3-step second-order BDF (SOBDF) method. Additionally, we elaborate on equations that precisely describe the phase-lag and its derivatives, with a concentrated focus on the 3-step SOBDF method. The culmination of this work is the presentation of six distinct methods, each methodically crafted to negate both the real and imaginary elements of phase-lag and its derivatives in numerical computations. The study advances with a meticulous examination of the local truncation error and the stability regions pertinent to the six phase-fitted methods introduced. Furthermore, we scrutinize their computational performance by deploying these methods across a spectrum of initial value problems, offering valuable insights into their effectiveness in varying contexts.
doi_str_mv 10.1007/s10910-024-01619-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3062886070</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3062886070</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-bdd9909a87e98f9d7bc764ff50277083b45c86f6bd4c19385f75086b93bf70193</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AVcB19GbvpIsdXRUGHCj69C8Zjq0TSdJhfn3Viu4c3Xhcr5z4EPomsItBWB3kYKgQCArCNCKCpKfoAUtWUY4F-wULSArBRFM0HN0EeMeAASv-AKFdd017RF7h4ddHS12TUrW4JzEZAccrfa9IT4YG_DD4xp3Nu28idj5gKNvP5t-iwcbGm8ajeveYB9Uk-oWH8a6T2OH9c52TUzhiIfgVWu7eInOXN1Ge_V7l-hj_fS-eiGbt-fX1f2G6IxBIsoYIUDUnFnBnTBMaVYVzpWQMQY8V0WpeeUqZQpNRc5Lx0rglRK5cgymzxLdzL3T8GG0Mcm9H0M_TcocqozzChhMqWxO6eBjDNbJITRdHY6Sgvx2K2e3cnIrf9zKfILyGYpTuN_a8Ff9D_UFVft9CQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3062886070</pqid></control><display><type>article</type><title>Family of phase fitted 3-step second-order BDF methods for solving periodic and orbital quantum chemistry problems</title><source>SpringerNature Journals</source><creator>Saadat, Hosein ; Kiyadeh, Sanaz Hami Hassan ; Karim, Ramin Goudarzi ; Safaie, Ali</creator><creatorcontrib>Saadat, Hosein ; Kiyadeh, Sanaz Hami Hassan ; Karim, Ramin Goudarzi ; Safaie, Ali</creatorcontrib><description>In this paper, we introduce a novel series of second-order Backward Differentiation Formulas (BDFs) specifically designed to address phase-lag and its first derivative in the numerical resolution of Initial Value Problems (IVPs) with orbital solutions. Our methodology commences with an in-depth analysis of phase-lag phenomena associated with second-order BDFs. Following this, we construct a suite of equations by embedding algebraic functions into the operational framework of the 3-step second-order BDF (SOBDF) method. Additionally, we elaborate on equations that precisely describe the phase-lag and its derivatives, with a concentrated focus on the 3-step SOBDF method. The culmination of this work is the presentation of six distinct methods, each methodically crafted to negate both the real and imaginary elements of phase-lag and its derivatives in numerical computations. The study advances with a meticulous examination of the local truncation error and the stability regions pertinent to the six phase-fitted methods introduced. Furthermore, we scrutinize their computational performance by deploying these methods across a spectrum of initial value problems, offering valuable insights into their effectiveness in varying contexts.</description><identifier>ISSN: 0259-9791</identifier><identifier>EISSN: 1572-8897</identifier><identifier>DOI: 10.1007/s10910-024-01619-3</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Boundary value problems ; Chemistry ; Chemistry and Materials Science ; Derivatives ; Math. Applications in Chemistry ; Mathematical analysis ; Phase lag ; Physical Chemistry ; Quantum chemistry ; Review ; Theoretical and Computational Chemistry ; Truncation errors</subject><ispartof>Journal of mathematical chemistry, 2024, Vol.62 (6), p.1223-1250</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-bdd9909a87e98f9d7bc764ff50277083b45c86f6bd4c19385f75086b93bf70193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10910-024-01619-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10910-024-01619-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27933,27934,41497,42566,51328</link.rule.ids></links><search><creatorcontrib>Saadat, Hosein</creatorcontrib><creatorcontrib>Kiyadeh, Sanaz Hami Hassan</creatorcontrib><creatorcontrib>Karim, Ramin Goudarzi</creatorcontrib><creatorcontrib>Safaie, Ali</creatorcontrib><title>Family of phase fitted 3-step second-order BDF methods for solving periodic and orbital quantum chemistry problems</title><title>Journal of mathematical chemistry</title><addtitle>J Math Chem</addtitle><description>In this paper, we introduce a novel series of second-order Backward Differentiation Formulas (BDFs) specifically designed to address phase-lag and its first derivative in the numerical resolution of Initial Value Problems (IVPs) with orbital solutions. Our methodology commences with an in-depth analysis of phase-lag phenomena associated with second-order BDFs. Following this, we construct a suite of equations by embedding algebraic functions into the operational framework of the 3-step second-order BDF (SOBDF) method. Additionally, we elaborate on equations that precisely describe the phase-lag and its derivatives, with a concentrated focus on the 3-step SOBDF method. The culmination of this work is the presentation of six distinct methods, each methodically crafted to negate both the real and imaginary elements of phase-lag and its derivatives in numerical computations. The study advances with a meticulous examination of the local truncation error and the stability regions pertinent to the six phase-fitted methods introduced. Furthermore, we scrutinize their computational performance by deploying these methods across a spectrum of initial value problems, offering valuable insights into their effectiveness in varying contexts.</description><subject>Boundary value problems</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Derivatives</subject><subject>Math. Applications in Chemistry</subject><subject>Mathematical analysis</subject><subject>Phase lag</subject><subject>Physical Chemistry</subject><subject>Quantum chemistry</subject><subject>Review</subject><subject>Theoretical and Computational Chemistry</subject><subject>Truncation errors</subject><issn>0259-9791</issn><issn>1572-8897</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-AVcB19GbvpIsdXRUGHCj69C8Zjq0TSdJhfn3Viu4c3Xhcr5z4EPomsItBWB3kYKgQCArCNCKCpKfoAUtWUY4F-wULSArBRFM0HN0EeMeAASv-AKFdd017RF7h4ddHS12TUrW4JzEZAccrfa9IT4YG_DD4xp3Nu28idj5gKNvP5t-iwcbGm8ajeveYB9Uk-oWH8a6T2OH9c52TUzhiIfgVWu7eInOXN1Ge_V7l-hj_fS-eiGbt-fX1f2G6IxBIsoYIUDUnFnBnTBMaVYVzpWQMQY8V0WpeeUqZQpNRc5Lx0rglRK5cgymzxLdzL3T8GG0Mcm9H0M_TcocqozzChhMqWxO6eBjDNbJITRdHY6Sgvx2K2e3cnIrf9zKfILyGYpTuN_a8Ff9D_UFVft9CQ</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Saadat, Hosein</creator><creator>Kiyadeh, Sanaz Hami Hassan</creator><creator>Karim, Ramin Goudarzi</creator><creator>Safaie, Ali</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2024</creationdate><title>Family of phase fitted 3-step second-order BDF methods for solving periodic and orbital quantum chemistry problems</title><author>Saadat, Hosein ; Kiyadeh, Sanaz Hami Hassan ; Karim, Ramin Goudarzi ; Safaie, Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-bdd9909a87e98f9d7bc764ff50277083b45c86f6bd4c19385f75086b93bf70193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Boundary value problems</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Derivatives</topic><topic>Math. Applications in Chemistry</topic><topic>Mathematical analysis</topic><topic>Phase lag</topic><topic>Physical Chemistry</topic><topic>Quantum chemistry</topic><topic>Review</topic><topic>Theoretical and Computational Chemistry</topic><topic>Truncation errors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saadat, Hosein</creatorcontrib><creatorcontrib>Kiyadeh, Sanaz Hami Hassan</creatorcontrib><creatorcontrib>Karim, Ramin Goudarzi</creatorcontrib><creatorcontrib>Safaie, Ali</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saadat, Hosein</au><au>Kiyadeh, Sanaz Hami Hassan</au><au>Karim, Ramin Goudarzi</au><au>Safaie, Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Family of phase fitted 3-step second-order BDF methods for solving periodic and orbital quantum chemistry problems</atitle><jtitle>Journal of mathematical chemistry</jtitle><stitle>J Math Chem</stitle><date>2024</date><risdate>2024</risdate><volume>62</volume><issue>6</issue><spage>1223</spage><epage>1250</epage><pages>1223-1250</pages><issn>0259-9791</issn><eissn>1572-8897</eissn><abstract>In this paper, we introduce a novel series of second-order Backward Differentiation Formulas (BDFs) specifically designed to address phase-lag and its first derivative in the numerical resolution of Initial Value Problems (IVPs) with orbital solutions. Our methodology commences with an in-depth analysis of phase-lag phenomena associated with second-order BDFs. Following this, we construct a suite of equations by embedding algebraic functions into the operational framework of the 3-step second-order BDF (SOBDF) method. Additionally, we elaborate on equations that precisely describe the phase-lag and its derivatives, with a concentrated focus on the 3-step SOBDF method. The culmination of this work is the presentation of six distinct methods, each methodically crafted to negate both the real and imaginary elements of phase-lag and its derivatives in numerical computations. The study advances with a meticulous examination of the local truncation error and the stability regions pertinent to the six phase-fitted methods introduced. Furthermore, we scrutinize their computational performance by deploying these methods across a spectrum of initial value problems, offering valuable insights into their effectiveness in varying contexts.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10910-024-01619-3</doi><tpages>28</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0259-9791
ispartof Journal of mathematical chemistry, 2024, Vol.62 (6), p.1223-1250
issn 0259-9791
1572-8897
language eng
recordid cdi_proquest_journals_3062886070
source SpringerNature Journals
subjects Boundary value problems
Chemistry
Chemistry and Materials Science
Derivatives
Math. Applications in Chemistry
Mathematical analysis
Phase lag
Physical Chemistry
Quantum chemistry
Review
Theoretical and Computational Chemistry
Truncation errors
title Family of phase fitted 3-step second-order BDF methods for solving periodic and orbital quantum chemistry problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T07%3A47%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Family%20of%20phase%20fitted%203-step%20second-order%20BDF%20methods%20for%20solving%20periodic%20and%20orbital%20quantum%20chemistry%20problems&rft.jtitle=Journal%20of%20mathematical%20chemistry&rft.au=Saadat,%20Hosein&rft.date=2024&rft.volume=62&rft.issue=6&rft.spage=1223&rft.epage=1250&rft.pages=1223-1250&rft.issn=0259-9791&rft.eissn=1572-8897&rft_id=info:doi/10.1007/s10910-024-01619-3&rft_dat=%3Cproquest_cross%3E3062886070%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3062886070&rft_id=info:pmid/&rfr_iscdi=true