Family of phase fitted 3-step second-order BDF methods for solving periodic and orbital quantum chemistry problems

In this paper, we introduce a novel series of second-order Backward Differentiation Formulas (BDFs) specifically designed to address phase-lag and its first derivative in the numerical resolution of Initial Value Problems (IVPs) with orbital solutions. Our methodology commences with an in-depth anal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical chemistry 2024, Vol.62 (6), p.1223-1250
Hauptverfasser: Saadat, Hosein, Kiyadeh, Sanaz Hami Hassan, Karim, Ramin Goudarzi, Safaie, Ali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we introduce a novel series of second-order Backward Differentiation Formulas (BDFs) specifically designed to address phase-lag and its first derivative in the numerical resolution of Initial Value Problems (IVPs) with orbital solutions. Our methodology commences with an in-depth analysis of phase-lag phenomena associated with second-order BDFs. Following this, we construct a suite of equations by embedding algebraic functions into the operational framework of the 3-step second-order BDF (SOBDF) method. Additionally, we elaborate on equations that precisely describe the phase-lag and its derivatives, with a concentrated focus on the 3-step SOBDF method. The culmination of this work is the presentation of six distinct methods, each methodically crafted to negate both the real and imaginary elements of phase-lag and its derivatives in numerical computations. The study advances with a meticulous examination of the local truncation error and the stability regions pertinent to the six phase-fitted methods introduced. Furthermore, we scrutinize their computational performance by deploying these methods across a spectrum of initial value problems, offering valuable insights into their effectiveness in varying contexts.
ISSN:0259-9791
1572-8897
DOI:10.1007/s10910-024-01619-3