Comparative Analysis of Three Types of Whey as Substrate for Fermentation by Kluyveromyces marxianus and its Influence on Isoamyl Acetate Synthesis

Whey, a primary byproduct of cheese production, is rich in organic content, largely due to its lactose concentration (45–60 g/L). Cheese production yields three types of residues: sweet whey (SW), acid whey, and ricotta whey (RW). Each has unique physicochemical properties that present challenges fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Waste and biomass valorization 2024, Vol.15 (6), p.3413-3424
Hauptverfasser: Hernández-Cruz, M. A., Cadena-Ramírez, A., Castro-Rosas, J., Páez-Lerma, J. B., Ramírez-Vargas, M. R., Rangel-Vargas, E., Romo-Gómez, C., Lara-Gómez, A. B., Conde-Báez, L., Gómez-Aldapa, C. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Whey, a primary byproduct of cheese production, is rich in organic content, largely due to its lactose concentration (45–60 g/L). Cheese production yields three types of residues: sweet whey (SW), acid whey, and ricotta whey (RW). Each has unique physicochemical properties that present challenges for small to medium-sized enterprises because of the expensive treatment required. One solution to this problem is fermenting these substrates to produce value-added products. This study aimed to assess the fermentation of the three RW types using Kluyveromyces marxianus ITD00262 for isoamyl acetate production, a compound that gives a banana-like aroma. Several factors were analyzed: cell growth, pH changes, lactose content reduction, ethanol production, and isoamyl acetate formation. Cell growth was consistent across all whey types. As for pH, there was a drop during the initial 48 h to roughly 4.3, after which it rose to near 7. In acid whey, 50.95 g/L of ethanol was produced by the 120-h mark. The peak isoamyl acetate concentration was observed at 24 h, registering 160 mg/L in YPL medium, while SW peaked at 124 mg/L at 72 h. Lastly, the highest lactose consumption was seen in SW, approximately 76% at 24 h, surpassing that of acid and ricotta whey, which fluctuated between 56 and 58%. Graphical Abstract
ISSN:1877-2641
1877-265X
DOI:10.1007/s12649-023-02380-5