Spherical convex hull of random points on a wedge

Consider two half-spaces H 1 + and H 2 + in R d + 1 whose bounding hyperplanes H 1 and H 2 are orthogonal and pass through the origin. The intersection S 2 , + d : = S d ∩ H 1 + ∩ H 2 + is a spherical convex subset of the d -dimensional unit sphere S d , which contains a great subsphere of dimension...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische annalen 2024-07, Vol.389 (3), p.2289-2316
Hauptverfasser: Besau, Florian, Gusakova, Anna, Reitzner, Matthias, Schütt, Carsten, Thäle, Christoph, Werner, Elisabeth M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Consider two half-spaces H 1 + and H 2 + in R d + 1 whose bounding hyperplanes H 1 and H 2 are orthogonal and pass through the origin. The intersection S 2 , + d : = S d ∩ H 1 + ∩ H 2 + is a spherical convex subset of the d -dimensional unit sphere S d , which contains a great subsphere of dimension d - 2 and is called a spherical wedge. Choose n independent random points uniformly at random on S 2 , + d and consider the expected facet number of the spherical convex hull of these points. It is shown that, up to terms of lower order, this expectation grows like a constant multiple of log n . A similar behaviour is obtained for the expected facet number of a homogeneous Poisson point process on S 2 , + d . The result is compared to the corresponding behaviour of classical Euclidean random polytopes and of spherical random polytopes on a half-sphere.
ISSN:0025-5831
1432-1807
DOI:10.1007/s00208-023-02704-9