Deep Speech Denoising with Minimal Dependence on Clean Speech Data
Most of the existing deep learning-based speech denoising methods rely heavily on clean speech data. According to the traditional view, a large number of noisy and clean speech samples are required for good speech denoising performance. However, the data collection is a technical barrier to this cri...
Gespeichert in:
Veröffentlicht in: | Circuits, systems, and signal processing systems, and signal processing, 2024-06, Vol.43 (6), p.3909-3926 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Most of the existing deep learning-based speech denoising methods rely heavily on clean speech data. According to the traditional view, a large number of noisy and clean speech samples are required for good speech denoising performance. However, the data collection is a technical barrier to this criteria, particularly in economically challenged areas and for languages with limited resources. Training deep denoising networks with only noisy speech samples is a viable option to avoid dependence on sample data size. In this study, the target and input of a DCU-Net were trained using only noisy speech samples. Experimental results demonstrate that, when compared to traditional speech denoising techniques, the proposed approach avoids not only the high dependence on clean targets but also the high dependence on large data sizes. |
---|---|
ISSN: | 0278-081X 1531-5878 |
DOI: | 10.1007/s00034-024-02644-y |