Distributionally Robust and Generalizable Inference
We discuss recently developed methods that quantify the stability and generalizability of statistical findings under distributional changes. In many practical problems, the data is not drawn i.i.d. from the target population. For example, unobserved sampling bias, batch effects, or unknown associati...
Gespeichert in:
Veröffentlicht in: | Statistical science 2023-11, Vol.38 (4), p.527 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We discuss recently developed methods that quantify the stability and generalizability of statistical findings under distributional changes. In many practical problems, the data is not drawn i.i.d. from the target population. For example, unobserved sampling bias, batch effects, or unknown associations might inflate the variance compared to i.i.d. sampling. For reliable statistical inference, it is thus necessary to account for these types of variation. We discuss and review two methods that allow to quantify distribution stability based on a single dataset. The first method computes the sensitivity of a parameter under worst-case distributional perturbations to understand which types of shift pose a threat to external validity. The second method treats distributional shifts as random which allows to assess average robustness (instead of worst-case). Based on a stability analysis of multiple estimators on a single dataset, it integrates both sampling and distributional uncertainty into a single confidence interval. |
---|---|
ISSN: | 0883-4237 2168-8745 |
DOI: | 10.1214/23-STS902 |