Dynamics for a diffusive prey–predator model with advection and free boundaries

This article deals with a free boundary problem of the Lotka–Volterra type prey–predator model with advection in one space dimension. The model considered here may be applied to describe the expanding of an invasive or new predator species adopting a combination of random movement and advection upwa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2024-05, Vol.47 (7), p.6216-6233
Hauptverfasser: Zhao, Yong‐Gang, Srivastava, Hari Mohan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6233
container_issue 7
container_start_page 6216
container_title Mathematical methods in the applied sciences
container_volume 47
creator Zhao, Yong‐Gang
Srivastava, Hari Mohan
description This article deals with a free boundary problem of the Lotka–Volterra type prey–predator model with advection in one space dimension. The model considered here may be applied to describe the expanding of an invasive or new predator species adopting a combination of random movement and advection upward or downward along the resource gradient, with the free boundaries representing expanding fronts of predator species. The main purpose of this article is to understand the influence of the advection environment on the dynamics of the model. We provide sufficient conditions for spreading and vanishing of the predator species, and we find a sharp threshold between the spreading and vanishing concerning this model. Moreover, for the case of successful spreading for the predator, we give estimates of asymptotic spreading speeds and nonlocal long‐time behavior of the prey and the predator.
doi_str_mv 10.1002/mma.9917
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3062122078</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3062122078</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2547-1f0c285b7d1ee2684499e9132b6929d8f8d1a0c49762a12a3b795e5269d99d123</originalsourceid><addsrcrecordid>eNp10M1KxDAUBeAgCo6j4CME3LjpmHv7k2Y5jL8wgwi6DmmTYIZpOybtDN35Dr6hT2LHunV1FvfjXDiEXAKbAWN4U1VqJgTwIzIBJkQECc-OyYQBZ1GCkJySsxDWjLEcACfk5bavVeXKQG3jqaLaWdsFtzN0603__fk1hFbtcKsabTZ079p3qvTOlK1raqpqTa03hhZNV2vlnQnn5MSqTTAXfzklb_d3r4vHaPn88LSYL6MS04RHYFmJeVpwDcZglieJEEZAjEUmUOjc5hoUKxPBM1SAKi64SE2KmdBCaMB4Sq7G3q1vPjoTWrluOl8PL2XMMgRExvNBXY-q9E0I3li59a5SvpfA5GEwOQwmD4MNNBrp3m1M_6-Tq9X81_8A7PRsNQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3062122078</pqid></control><display><type>article</type><title>Dynamics for a diffusive prey–predator model with advection and free boundaries</title><source>Wiley Online Library All Journals</source><creator>Zhao, Yong‐Gang ; Srivastava, Hari Mohan</creator><creatorcontrib>Zhao, Yong‐Gang ; Srivastava, Hari Mohan</creatorcontrib><description>This article deals with a free boundary problem of the Lotka–Volterra type prey–predator model with advection in one space dimension. The model considered here may be applied to describe the expanding of an invasive or new predator species adopting a combination of random movement and advection upward or downward along the resource gradient, with the free boundaries representing expanding fronts of predator species. The main purpose of this article is to understand the influence of the advection environment on the dynamics of the model. We provide sufficient conditions for spreading and vanishing of the predator species, and we find a sharp threshold between the spreading and vanishing concerning this model. Moreover, for the case of successful spreading for the predator, we give estimates of asymptotic spreading speeds and nonlocal long‐time behavior of the prey and the predator.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.9917</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>Advection ; Free boundaries ; free boundary problems ; Lotka–Volterra type prey–predator model with advection ; nonlocal long‐time behavior ; Predators ; prey–predator model ; Spreading ; spreading and vanishing of the predator and prey species</subject><ispartof>Mathematical methods in the applied sciences, 2024-05, Vol.47 (7), p.6216-6233</ispartof><rights>2024 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2547-1f0c285b7d1ee2684499e9132b6929d8f8d1a0c49762a12a3b795e5269d99d123</cites><orcidid>0000-0001-5041-1981 ; 0000-0002-9277-8092</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.9917$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.9917$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Zhao, Yong‐Gang</creatorcontrib><creatorcontrib>Srivastava, Hari Mohan</creatorcontrib><title>Dynamics for a diffusive prey–predator model with advection and free boundaries</title><title>Mathematical methods in the applied sciences</title><description>This article deals with a free boundary problem of the Lotka–Volterra type prey–predator model with advection in one space dimension. The model considered here may be applied to describe the expanding of an invasive or new predator species adopting a combination of random movement and advection upward or downward along the resource gradient, with the free boundaries representing expanding fronts of predator species. The main purpose of this article is to understand the influence of the advection environment on the dynamics of the model. We provide sufficient conditions for spreading and vanishing of the predator species, and we find a sharp threshold between the spreading and vanishing concerning this model. Moreover, for the case of successful spreading for the predator, we give estimates of asymptotic spreading speeds and nonlocal long‐time behavior of the prey and the predator.</description><subject>Advection</subject><subject>Free boundaries</subject><subject>free boundary problems</subject><subject>Lotka–Volterra type prey–predator model with advection</subject><subject>nonlocal long‐time behavior</subject><subject>Predators</subject><subject>prey–predator model</subject><subject>Spreading</subject><subject>spreading and vanishing of the predator and prey species</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp10M1KxDAUBeAgCo6j4CME3LjpmHv7k2Y5jL8wgwi6DmmTYIZpOybtDN35Dr6hT2LHunV1FvfjXDiEXAKbAWN4U1VqJgTwIzIBJkQECc-OyYQBZ1GCkJySsxDWjLEcACfk5bavVeXKQG3jqaLaWdsFtzN0603__fk1hFbtcKsabTZ079p3qvTOlK1raqpqTa03hhZNV2vlnQnn5MSqTTAXfzklb_d3r4vHaPn88LSYL6MS04RHYFmJeVpwDcZglieJEEZAjEUmUOjc5hoUKxPBM1SAKi64SE2KmdBCaMB4Sq7G3q1vPjoTWrluOl8PL2XMMgRExvNBXY-q9E0I3li59a5SvpfA5GEwOQwmD4MNNBrp3m1M_6-Tq9X81_8A7PRsNQ</recordid><startdate>20240515</startdate><enddate>20240515</enddate><creator>Zhao, Yong‐Gang</creator><creator>Srivastava, Hari Mohan</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0001-5041-1981</orcidid><orcidid>https://orcid.org/0000-0002-9277-8092</orcidid></search><sort><creationdate>20240515</creationdate><title>Dynamics for a diffusive prey–predator model with advection and free boundaries</title><author>Zhao, Yong‐Gang ; Srivastava, Hari Mohan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2547-1f0c285b7d1ee2684499e9132b6929d8f8d1a0c49762a12a3b795e5269d99d123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Advection</topic><topic>Free boundaries</topic><topic>free boundary problems</topic><topic>Lotka–Volterra type prey–predator model with advection</topic><topic>nonlocal long‐time behavior</topic><topic>Predators</topic><topic>prey–predator model</topic><topic>Spreading</topic><topic>spreading and vanishing of the predator and prey species</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Yong‐Gang</creatorcontrib><creatorcontrib>Srivastava, Hari Mohan</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Yong‐Gang</au><au>Srivastava, Hari Mohan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamics for a diffusive prey–predator model with advection and free boundaries</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2024-05-15</date><risdate>2024</risdate><volume>47</volume><issue>7</issue><spage>6216</spage><epage>6233</epage><pages>6216-6233</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>This article deals with a free boundary problem of the Lotka–Volterra type prey–predator model with advection in one space dimension. The model considered here may be applied to describe the expanding of an invasive or new predator species adopting a combination of random movement and advection upward or downward along the resource gradient, with the free boundaries representing expanding fronts of predator species. The main purpose of this article is to understand the influence of the advection environment on the dynamics of the model. We provide sufficient conditions for spreading and vanishing of the predator species, and we find a sharp threshold between the spreading and vanishing concerning this model. Moreover, for the case of successful spreading for the predator, we give estimates of asymptotic spreading speeds and nonlocal long‐time behavior of the prey and the predator.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.9917</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-5041-1981</orcidid><orcidid>https://orcid.org/0000-0002-9277-8092</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2024-05, Vol.47 (7), p.6216-6233
issn 0170-4214
1099-1476
language eng
recordid cdi_proquest_journals_3062122078
source Wiley Online Library All Journals
subjects Advection
Free boundaries
free boundary problems
Lotka–Volterra type prey–predator model with advection
nonlocal long‐time behavior
Predators
prey–predator model
Spreading
spreading and vanishing of the predator and prey species
title Dynamics for a diffusive prey–predator model with advection and free boundaries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T04%3A47%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamics%20for%20a%20diffusive%20prey%E2%80%93predator%20model%20with%20advection%20and%20free%20boundaries&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Zhao,%20Yong%E2%80%90Gang&rft.date=2024-05-15&rft.volume=47&rft.issue=7&rft.spage=6216&rft.epage=6233&rft.pages=6216-6233&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.9917&rft_dat=%3Cproquest_cross%3E3062122078%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3062122078&rft_id=info:pmid/&rfr_iscdi=true