Dynamics for a diffusive prey–predator model with advection and free boundaries

This article deals with a free boundary problem of the Lotka–Volterra type prey–predator model with advection in one space dimension. The model considered here may be applied to describe the expanding of an invasive or new predator species adopting a combination of random movement and advection upwa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2024-05, Vol.47 (7), p.6216-6233
Hauptverfasser: Zhao, Yong‐Gang, Srivastava, Hari Mohan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article deals with a free boundary problem of the Lotka–Volterra type prey–predator model with advection in one space dimension. The model considered here may be applied to describe the expanding of an invasive or new predator species adopting a combination of random movement and advection upward or downward along the resource gradient, with the free boundaries representing expanding fronts of predator species. The main purpose of this article is to understand the influence of the advection environment on the dynamics of the model. We provide sufficient conditions for spreading and vanishing of the predator species, and we find a sharp threshold between the spreading and vanishing concerning this model. Moreover, for the case of successful spreading for the predator, we give estimates of asymptotic spreading speeds and nonlocal long‐time behavior of the prey and the predator.
ISSN:0170-4214
1099-1476
DOI:10.1002/mma.9917