A kinetic model with time‐dependent proliferative/destructive rates

This paper presents a new kinetic model with time‐dependent proliferative/destructive parameters, where the activity variable of the system attains its values in a discrete real subset. Therefore, a system of nonautonomous nonlinear ordinary differential equations is gained, with the related Cauchy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2024-05, Vol.47 (7), p.5376-5391
Hauptverfasser: Menale, Marco, Soares, Ana Jacinta
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5391
container_issue 7
container_start_page 5376
container_title Mathematical methods in the applied sciences
container_volume 47
creator Menale, Marco
Soares, Ana Jacinta
description This paper presents a new kinetic model with time‐dependent proliferative/destructive parameters, where the activity variable of the system attains its values in a discrete real subset. Therefore, a system of nonautonomous nonlinear ordinary differential equations is gained, with the related Cauchy problem. A first result of local existence and uniqueness of positive and bounded solution is proved. Then, the possibility of extend this result globally in time is discussed, with respect to the shape of nonconservative time‐dependent parameters. Numerical simulations are performed for some scenarios, corresponding to different shapes of time‐dependent parameters themselves. Furthermore, the pattern and long‐time behavior of solutions are numerically analyzed. Finally, these results show that equilibria and oscillations may occur.
doi_str_mv 10.1002/mma.9868
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3062121968</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3062121968</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2888-b70ded17f619a34d480c9f3cd7a911e667ce0e2f0ec092f98ae42f8d99f68c243</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKvgT1jw4mXbmWzIJsdS6ge0eNFziMkEU_ejZrcWb_4Ef6O_xK316mmG4eGdl4exS4QJAvBpXduJVlIdsRGC1jmKUh6zEWAJueAoTtlZ160BQCHyEVvMstfYUB9dVreeqmwX-5esjzV9f3552lDjqemzTWqrGCjZPr7T1FPXp63b79lwou6cnQRbdXTxN8fs6WbxOL_Llw-39_PZMndcKZU_l-DJYxkkalsILxQ4HQrnS6sRScrSERAPQA40D1pZEjwor3WQynFRjNnVIXfo87YdWph1u03N8NIUIDly1FIN1PWBcqntukTBbFKsbfowCGYvyQySzF7SgOYHdBcr-viXM6vV7Jf_AUVnaZ0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3062121968</pqid></control><display><type>article</type><title>A kinetic model with time‐dependent proliferative/destructive rates</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Menale, Marco ; Soares, Ana Jacinta</creator><creatorcontrib>Menale, Marco ; Soares, Ana Jacinta</creatorcontrib><description>This paper presents a new kinetic model with time‐dependent proliferative/destructive parameters, where the activity variable of the system attains its values in a discrete real subset. Therefore, a system of nonautonomous nonlinear ordinary differential equations is gained, with the related Cauchy problem. A first result of local existence and uniqueness of positive and bounded solution is proved. Then, the possibility of extend this result globally in time is discussed, with respect to the shape of nonconservative time‐dependent parameters. Numerical simulations are performed for some scenarios, corresponding to different shapes of time‐dependent parameters themselves. Furthermore, the pattern and long‐time behavior of solutions are numerically analyzed. Finally, these results show that equilibria and oscillations may occur.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.9868</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>interacting systems ; kinetic theory ; Nonlinear differential equations ; ordinary differential equations ; Parameters ; Time dependence ; time‐dependent parameters</subject><ispartof>Mathematical methods in the applied sciences, 2024-05, Vol.47 (7), p.5376-5391</ispartof><rights>2023 The Authors. Mathematical Methods in the Applied Sciences published by John Wiley &amp; Sons Ltd.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2888-b70ded17f619a34d480c9f3cd7a911e667ce0e2f0ec092f98ae42f8d99f68c243</cites><orcidid>0000-0003-4771-9859 ; 0000-0001-8822-3038</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.9868$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.9868$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids></links><search><creatorcontrib>Menale, Marco</creatorcontrib><creatorcontrib>Soares, Ana Jacinta</creatorcontrib><title>A kinetic model with time‐dependent proliferative/destructive rates</title><title>Mathematical methods in the applied sciences</title><description>This paper presents a new kinetic model with time‐dependent proliferative/destructive parameters, where the activity variable of the system attains its values in a discrete real subset. Therefore, a system of nonautonomous nonlinear ordinary differential equations is gained, with the related Cauchy problem. A first result of local existence and uniqueness of positive and bounded solution is proved. Then, the possibility of extend this result globally in time is discussed, with respect to the shape of nonconservative time‐dependent parameters. Numerical simulations are performed for some scenarios, corresponding to different shapes of time‐dependent parameters themselves. Furthermore, the pattern and long‐time behavior of solutions are numerically analyzed. Finally, these results show that equilibria and oscillations may occur.</description><subject>interacting systems</subject><subject>kinetic theory</subject><subject>Nonlinear differential equations</subject><subject>ordinary differential equations</subject><subject>Parameters</subject><subject>Time dependence</subject><subject>time‐dependent parameters</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp1kE1LAzEQhoMoWKvgT1jw4mXbmWzIJsdS6ge0eNFziMkEU_ejZrcWb_4Ef6O_xK316mmG4eGdl4exS4QJAvBpXduJVlIdsRGC1jmKUh6zEWAJueAoTtlZ160BQCHyEVvMstfYUB9dVreeqmwX-5esjzV9f3552lDjqemzTWqrGCjZPr7T1FPXp63b79lwou6cnQRbdXTxN8fs6WbxOL_Llw-39_PZMndcKZU_l-DJYxkkalsILxQ4HQrnS6sRScrSERAPQA40D1pZEjwor3WQynFRjNnVIXfo87YdWph1u03N8NIUIDly1FIN1PWBcqntukTBbFKsbfowCGYvyQySzF7SgOYHdBcr-viXM6vV7Jf_AUVnaZ0</recordid><startdate>20240515</startdate><enddate>20240515</enddate><creator>Menale, Marco</creator><creator>Soares, Ana Jacinta</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0003-4771-9859</orcidid><orcidid>https://orcid.org/0000-0001-8822-3038</orcidid></search><sort><creationdate>20240515</creationdate><title>A kinetic model with time‐dependent proliferative/destructive rates</title><author>Menale, Marco ; Soares, Ana Jacinta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2888-b70ded17f619a34d480c9f3cd7a911e667ce0e2f0ec092f98ae42f8d99f68c243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>interacting systems</topic><topic>kinetic theory</topic><topic>Nonlinear differential equations</topic><topic>ordinary differential equations</topic><topic>Parameters</topic><topic>Time dependence</topic><topic>time‐dependent parameters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Menale, Marco</creatorcontrib><creatorcontrib>Soares, Ana Jacinta</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Menale, Marco</au><au>Soares, Ana Jacinta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A kinetic model with time‐dependent proliferative/destructive rates</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2024-05-15</date><risdate>2024</risdate><volume>47</volume><issue>7</issue><spage>5376</spage><epage>5391</epage><pages>5376-5391</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>This paper presents a new kinetic model with time‐dependent proliferative/destructive parameters, where the activity variable of the system attains its values in a discrete real subset. Therefore, a system of nonautonomous nonlinear ordinary differential equations is gained, with the related Cauchy problem. A first result of local existence and uniqueness of positive and bounded solution is proved. Then, the possibility of extend this result globally in time is discussed, with respect to the shape of nonconservative time‐dependent parameters. Numerical simulations are performed for some scenarios, corresponding to different shapes of time‐dependent parameters themselves. Furthermore, the pattern and long‐time behavior of solutions are numerically analyzed. Finally, these results show that equilibria and oscillations may occur.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.9868</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-4771-9859</orcidid><orcidid>https://orcid.org/0000-0001-8822-3038</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2024-05, Vol.47 (7), p.5376-5391
issn 0170-4214
1099-1476
language eng
recordid cdi_proquest_journals_3062121968
source Wiley Online Library Journals Frontfile Complete
subjects interacting systems
kinetic theory
Nonlinear differential equations
ordinary differential equations
Parameters
Time dependence
time‐dependent parameters
title A kinetic model with time‐dependent proliferative/destructive rates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T10%3A55%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20kinetic%20model%20with%20time%E2%80%90dependent%20proliferative/destructive%20rates&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Menale,%20Marco&rft.date=2024-05-15&rft.volume=47&rft.issue=7&rft.spage=5376&rft.epage=5391&rft.pages=5376-5391&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.9868&rft_dat=%3Cproquest_cross%3E3062121968%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3062121968&rft_id=info:pmid/&rfr_iscdi=true