A kinetic model with time‐dependent proliferative/destructive rates

This paper presents a new kinetic model with time‐dependent proliferative/destructive parameters, where the activity variable of the system attains its values in a discrete real subset. Therefore, a system of nonautonomous nonlinear ordinary differential equations is gained, with the related Cauchy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2024-05, Vol.47 (7), p.5376-5391
Hauptverfasser: Menale, Marco, Soares, Ana Jacinta
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a new kinetic model with time‐dependent proliferative/destructive parameters, where the activity variable of the system attains its values in a discrete real subset. Therefore, a system of nonautonomous nonlinear ordinary differential equations is gained, with the related Cauchy problem. A first result of local existence and uniqueness of positive and bounded solution is proved. Then, the possibility of extend this result globally in time is discussed, with respect to the shape of nonconservative time‐dependent parameters. Numerical simulations are performed for some scenarios, corresponding to different shapes of time‐dependent parameters themselves. Furthermore, the pattern and long‐time behavior of solutions are numerically analyzed. Finally, these results show that equilibria and oscillations may occur.
ISSN:0170-4214
1099-1476
DOI:10.1002/mma.9868