Prediction of self-similar waves in tapered graded index diffraction decreasing waveguide by the A-gPINN method

In this paper, an adaptive gradient-enhanced physics-informed neural network method(A-gPINN) is proposed to investigate the dynamics of solitons in tapered refractive index waveguides. A-gPINN method adopts adaptive sampling and incorporates the gradient information of the nonlinear partial differen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear dynamics 2024-06, Vol.112 (12), p.10319-10340
Hauptverfasser: Li, Lang, Qiu, Weixin, Dai, Chaoqing, Wang, Yueyue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10340
container_issue 12
container_start_page 10319
container_title Nonlinear dynamics
container_volume 112
creator Li, Lang
Qiu, Weixin
Dai, Chaoqing
Wang, Yueyue
description In this paper, an adaptive gradient-enhanced physics-informed neural network method(A-gPINN) is proposed to investigate the dynamics of solitons in tapered refractive index waveguides. A-gPINN method adopts adaptive sampling and incorporates the gradient information of the nonlinear partial differential equation into the neural network. Compared to traditional methods, A-gPINN can achieve a more accurate prediction of complicated soliton structures in a larger computational domain with less training data. Using this method, the evolution of self-similar bright solitons, self-similar soliton pairs, self-similar rogue waves, and self-similar Akhmediev breathers has been successfully and accurately predicted, while the coefficient variations of the generalized non-homogeneous nonlinear Schrödinger equation have been predicted reversely. Due to the superiority of this method, it turns to be a promising neural network method for studying soliton dynamics in optical fibers, and it also has application potential in other physical fields such as nonlinear optics and Bose Einstein condensation.
doi_str_mv 10.1007/s11071-024-09608-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3061554912</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3061554912</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-85265899b51ebd5179edd69afa03e837a680b6ef29ad9d74d004de786a5d4e813</originalsourceid><addsrcrecordid>eNp9kD1PwzAURS0EEqXwB5gsMRuek9iOxwrxUakqHUDqZjnxS-qqTYqdAv33hAaJjekO75z7pEvINYdbDqDuIuegOIMkY6Al5EyekBEXKmWJ1MtTMgJ9PMHynFzEuAaANIF8RNpFQOfLzrcNbSsacVOx6Ld-YwP9tB8YqW9oZ3fYY7QO1vXhG4df1PmqCnYwHZYBbfRNfZTqvXdIiwPtVkgnrF5M53O6xW7VuktyVtlNxKvfHJO3x4fX-2c2e3ma3k9mrEwUdCwXiRS51oXgWDjBlUbnpLaVhRTzVFmZQyGxSrR12qnMAWQOVS6tcBnmPB2Tm6F3F9r3PcbOrNt9aPqXJgXJhcg0T3oqGagytDEGrMwu-K0NB8PB_AxrhmFNP6w5DmtkL6WDFHu4qTH8Vf9jfQMGBnw_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3061554912</pqid></control><display><type>article</type><title>Prediction of self-similar waves in tapered graded index diffraction decreasing waveguide by the A-gPINN method</title><source>SpringerLink Journals</source><creator>Li, Lang ; Qiu, Weixin ; Dai, Chaoqing ; Wang, Yueyue</creator><creatorcontrib>Li, Lang ; Qiu, Weixin ; Dai, Chaoqing ; Wang, Yueyue</creatorcontrib><description>In this paper, an adaptive gradient-enhanced physics-informed neural network method(A-gPINN) is proposed to investigate the dynamics of solitons in tapered refractive index waveguides. A-gPINN method adopts adaptive sampling and incorporates the gradient information of the nonlinear partial differential equation into the neural network. Compared to traditional methods, A-gPINN can achieve a more accurate prediction of complicated soliton structures in a larger computational domain with less training data. Using this method, the evolution of self-similar bright solitons, self-similar soliton pairs, self-similar rogue waves, and self-similar Akhmediev breathers has been successfully and accurately predicted, while the coefficient variations of the generalized non-homogeneous nonlinear Schrödinger equation have been predicted reversely. Due to the superiority of this method, it turns to be a promising neural network method for studying soliton dynamics in optical fibers, and it also has application potential in other physical fields such as nonlinear optics and Bose Einstein condensation.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-024-09608-6</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Adaptive sampling ; Algorithms ; Automotive Engineering ; Classical Mechanics ; Control ; Deep learning ; Dynamical Systems ; Efficiency ; Engineering ; Fourier transforms ; Light ; Mechanical Engineering ; Neural networks ; Nonlinear differential equations ; Nonlinear optics ; Numerical analysis ; Optical fibers ; Optics ; Original Paper ; Partial differential equations ; Physics ; Refractivity ; Research methodology ; Schrodinger equation ; Self-similarity ; Solitary waves ; Vibration ; Wave diffraction ; Waveguides</subject><ispartof>Nonlinear dynamics, 2024-06, Vol.112 (12), p.10319-10340</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-85265899b51ebd5179edd69afa03e837a680b6ef29ad9d74d004de786a5d4e813</cites><orcidid>0000-0003-3863-6381</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-024-09608-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-024-09608-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Li, Lang</creatorcontrib><creatorcontrib>Qiu, Weixin</creatorcontrib><creatorcontrib>Dai, Chaoqing</creatorcontrib><creatorcontrib>Wang, Yueyue</creatorcontrib><title>Prediction of self-similar waves in tapered graded index diffraction decreasing waveguide by the A-gPINN method</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>In this paper, an adaptive gradient-enhanced physics-informed neural network method(A-gPINN) is proposed to investigate the dynamics of solitons in tapered refractive index waveguides. A-gPINN method adopts adaptive sampling and incorporates the gradient information of the nonlinear partial differential equation into the neural network. Compared to traditional methods, A-gPINN can achieve a more accurate prediction of complicated soliton structures in a larger computational domain with less training data. Using this method, the evolution of self-similar bright solitons, self-similar soliton pairs, self-similar rogue waves, and self-similar Akhmediev breathers has been successfully and accurately predicted, while the coefficient variations of the generalized non-homogeneous nonlinear Schrödinger equation have been predicted reversely. Due to the superiority of this method, it turns to be a promising neural network method for studying soliton dynamics in optical fibers, and it also has application potential in other physical fields such as nonlinear optics and Bose Einstein condensation.</description><subject>Adaptive sampling</subject><subject>Algorithms</subject><subject>Automotive Engineering</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Deep learning</subject><subject>Dynamical Systems</subject><subject>Efficiency</subject><subject>Engineering</subject><subject>Fourier transforms</subject><subject>Light</subject><subject>Mechanical Engineering</subject><subject>Neural networks</subject><subject>Nonlinear differential equations</subject><subject>Nonlinear optics</subject><subject>Numerical analysis</subject><subject>Optical fibers</subject><subject>Optics</subject><subject>Original Paper</subject><subject>Partial differential equations</subject><subject>Physics</subject><subject>Refractivity</subject><subject>Research methodology</subject><subject>Schrodinger equation</subject><subject>Self-similarity</subject><subject>Solitary waves</subject><subject>Vibration</subject><subject>Wave diffraction</subject><subject>Waveguides</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAURS0EEqXwB5gsMRuek9iOxwrxUakqHUDqZjnxS-qqTYqdAv33hAaJjekO75z7pEvINYdbDqDuIuegOIMkY6Al5EyekBEXKmWJ1MtTMgJ9PMHynFzEuAaANIF8RNpFQOfLzrcNbSsacVOx6Ld-YwP9tB8YqW9oZ3fYY7QO1vXhG4df1PmqCnYwHZYBbfRNfZTqvXdIiwPtVkgnrF5M53O6xW7VuktyVtlNxKvfHJO3x4fX-2c2e3ma3k9mrEwUdCwXiRS51oXgWDjBlUbnpLaVhRTzVFmZQyGxSrR12qnMAWQOVS6tcBnmPB2Tm6F3F9r3PcbOrNt9aPqXJgXJhcg0T3oqGagytDEGrMwu-K0NB8PB_AxrhmFNP6w5DmtkL6WDFHu4qTH8Vf9jfQMGBnw_</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Li, Lang</creator><creator>Qiu, Weixin</creator><creator>Dai, Chaoqing</creator><creator>Wang, Yueyue</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3863-6381</orcidid></search><sort><creationdate>20240601</creationdate><title>Prediction of self-similar waves in tapered graded index diffraction decreasing waveguide by the A-gPINN method</title><author>Li, Lang ; Qiu, Weixin ; Dai, Chaoqing ; Wang, Yueyue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-85265899b51ebd5179edd69afa03e837a680b6ef29ad9d74d004de786a5d4e813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptive sampling</topic><topic>Algorithms</topic><topic>Automotive Engineering</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Deep learning</topic><topic>Dynamical Systems</topic><topic>Efficiency</topic><topic>Engineering</topic><topic>Fourier transforms</topic><topic>Light</topic><topic>Mechanical Engineering</topic><topic>Neural networks</topic><topic>Nonlinear differential equations</topic><topic>Nonlinear optics</topic><topic>Numerical analysis</topic><topic>Optical fibers</topic><topic>Optics</topic><topic>Original Paper</topic><topic>Partial differential equations</topic><topic>Physics</topic><topic>Refractivity</topic><topic>Research methodology</topic><topic>Schrodinger equation</topic><topic>Self-similarity</topic><topic>Solitary waves</topic><topic>Vibration</topic><topic>Wave diffraction</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Lang</creatorcontrib><creatorcontrib>Qiu, Weixin</creatorcontrib><creatorcontrib>Dai, Chaoqing</creatorcontrib><creatorcontrib>Wang, Yueyue</creatorcontrib><collection>CrossRef</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Lang</au><au>Qiu, Weixin</au><au>Dai, Chaoqing</au><au>Wang, Yueyue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of self-similar waves in tapered graded index diffraction decreasing waveguide by the A-gPINN method</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>112</volume><issue>12</issue><spage>10319</spage><epage>10340</epage><pages>10319-10340</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>In this paper, an adaptive gradient-enhanced physics-informed neural network method(A-gPINN) is proposed to investigate the dynamics of solitons in tapered refractive index waveguides. A-gPINN method adopts adaptive sampling and incorporates the gradient information of the nonlinear partial differential equation into the neural network. Compared to traditional methods, A-gPINN can achieve a more accurate prediction of complicated soliton structures in a larger computational domain with less training data. Using this method, the evolution of self-similar bright solitons, self-similar soliton pairs, self-similar rogue waves, and self-similar Akhmediev breathers has been successfully and accurately predicted, while the coefficient variations of the generalized non-homogeneous nonlinear Schrödinger equation have been predicted reversely. Due to the superiority of this method, it turns to be a promising neural network method for studying soliton dynamics in optical fibers, and it also has application potential in other physical fields such as nonlinear optics and Bose Einstein condensation.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-024-09608-6</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-3863-6381</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0924-090X
ispartof Nonlinear dynamics, 2024-06, Vol.112 (12), p.10319-10340
issn 0924-090X
1573-269X
language eng
recordid cdi_proquest_journals_3061554912
source SpringerLink Journals
subjects Adaptive sampling
Algorithms
Automotive Engineering
Classical Mechanics
Control
Deep learning
Dynamical Systems
Efficiency
Engineering
Fourier transforms
Light
Mechanical Engineering
Neural networks
Nonlinear differential equations
Nonlinear optics
Numerical analysis
Optical fibers
Optics
Original Paper
Partial differential equations
Physics
Refractivity
Research methodology
Schrodinger equation
Self-similarity
Solitary waves
Vibration
Wave diffraction
Waveguides
title Prediction of self-similar waves in tapered graded index diffraction decreasing waveguide by the A-gPINN method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T03%3A49%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20self-similar%20waves%20in%20tapered%20graded%20index%20diffraction%20decreasing%20waveguide%20by%20the%20A-gPINN%20method&rft.jtitle=Nonlinear%20dynamics&rft.au=Li,%20Lang&rft.date=2024-06-01&rft.volume=112&rft.issue=12&rft.spage=10319&rft.epage=10340&rft.pages=10319-10340&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-024-09608-6&rft_dat=%3Cproquest_cross%3E3061554912%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3061554912&rft_id=info:pmid/&rfr_iscdi=true