Prediction of self-similar waves in tapered graded index diffraction decreasing waveguide by the A-gPINN method
In this paper, an adaptive gradient-enhanced physics-informed neural network method(A-gPINN) is proposed to investigate the dynamics of solitons in tapered refractive index waveguides. A-gPINN method adopts adaptive sampling and incorporates the gradient information of the nonlinear partial differen...
Gespeichert in:
Veröffentlicht in: | Nonlinear dynamics 2024-06, Vol.112 (12), p.10319-10340 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10340 |
---|---|
container_issue | 12 |
container_start_page | 10319 |
container_title | Nonlinear dynamics |
container_volume | 112 |
creator | Li, Lang Qiu, Weixin Dai, Chaoqing Wang, Yueyue |
description | In this paper, an adaptive gradient-enhanced physics-informed neural network method(A-gPINN) is proposed to investigate the dynamics of solitons in tapered refractive index waveguides. A-gPINN method adopts adaptive sampling and incorporates the gradient information of the nonlinear partial differential equation into the neural network. Compared to traditional methods, A-gPINN can achieve a more accurate prediction of complicated soliton structures in a larger computational domain with less training data. Using this method, the evolution of self-similar bright solitons, self-similar soliton pairs, self-similar rogue waves, and self-similar Akhmediev breathers has been successfully and accurately predicted, while the coefficient variations of the generalized non-homogeneous nonlinear Schrödinger equation have been predicted reversely. Due to the superiority of this method, it turns to be a promising neural network method for studying soliton dynamics in optical fibers, and it also has application potential in other physical fields such as nonlinear optics and Bose Einstein condensation. |
doi_str_mv | 10.1007/s11071-024-09608-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3061554912</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3061554912</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-85265899b51ebd5179edd69afa03e837a680b6ef29ad9d74d004de786a5d4e813</originalsourceid><addsrcrecordid>eNp9kD1PwzAURS0EEqXwB5gsMRuek9iOxwrxUakqHUDqZjnxS-qqTYqdAv33hAaJjekO75z7pEvINYdbDqDuIuegOIMkY6Al5EyekBEXKmWJ1MtTMgJ9PMHynFzEuAaANIF8RNpFQOfLzrcNbSsacVOx6Ld-YwP9tB8YqW9oZ3fYY7QO1vXhG4df1PmqCnYwHZYBbfRNfZTqvXdIiwPtVkgnrF5M53O6xW7VuktyVtlNxKvfHJO3x4fX-2c2e3ma3k9mrEwUdCwXiRS51oXgWDjBlUbnpLaVhRTzVFmZQyGxSrR12qnMAWQOVS6tcBnmPB2Tm6F3F9r3PcbOrNt9aPqXJgXJhcg0T3oqGagytDEGrMwu-K0NB8PB_AxrhmFNP6w5DmtkL6WDFHu4qTH8Vf9jfQMGBnw_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3061554912</pqid></control><display><type>article</type><title>Prediction of self-similar waves in tapered graded index diffraction decreasing waveguide by the A-gPINN method</title><source>SpringerLink Journals</source><creator>Li, Lang ; Qiu, Weixin ; Dai, Chaoqing ; Wang, Yueyue</creator><creatorcontrib>Li, Lang ; Qiu, Weixin ; Dai, Chaoqing ; Wang, Yueyue</creatorcontrib><description>In this paper, an adaptive gradient-enhanced physics-informed neural network method(A-gPINN) is proposed to investigate the dynamics of solitons in tapered refractive index waveguides. A-gPINN method adopts adaptive sampling and incorporates the gradient information of the nonlinear partial differential equation into the neural network. Compared to traditional methods, A-gPINN can achieve a more accurate prediction of complicated soliton structures in a larger computational domain with less training data. Using this method, the evolution of self-similar bright solitons, self-similar soliton pairs, self-similar rogue waves, and self-similar Akhmediev breathers has been successfully and accurately predicted, while the coefficient variations of the generalized non-homogeneous nonlinear Schrödinger equation have been predicted reversely. Due to the superiority of this method, it turns to be a promising neural network method for studying soliton dynamics in optical fibers, and it also has application potential in other physical fields such as nonlinear optics and Bose Einstein condensation.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-024-09608-6</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Adaptive sampling ; Algorithms ; Automotive Engineering ; Classical Mechanics ; Control ; Deep learning ; Dynamical Systems ; Efficiency ; Engineering ; Fourier transforms ; Light ; Mechanical Engineering ; Neural networks ; Nonlinear differential equations ; Nonlinear optics ; Numerical analysis ; Optical fibers ; Optics ; Original Paper ; Partial differential equations ; Physics ; Refractivity ; Research methodology ; Schrodinger equation ; Self-similarity ; Solitary waves ; Vibration ; Wave diffraction ; Waveguides</subject><ispartof>Nonlinear dynamics, 2024-06, Vol.112 (12), p.10319-10340</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-85265899b51ebd5179edd69afa03e837a680b6ef29ad9d74d004de786a5d4e813</cites><orcidid>0000-0003-3863-6381</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-024-09608-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-024-09608-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Li, Lang</creatorcontrib><creatorcontrib>Qiu, Weixin</creatorcontrib><creatorcontrib>Dai, Chaoqing</creatorcontrib><creatorcontrib>Wang, Yueyue</creatorcontrib><title>Prediction of self-similar waves in tapered graded index diffraction decreasing waveguide by the A-gPINN method</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>In this paper, an adaptive gradient-enhanced physics-informed neural network method(A-gPINN) is proposed to investigate the dynamics of solitons in tapered refractive index waveguides. A-gPINN method adopts adaptive sampling and incorporates the gradient information of the nonlinear partial differential equation into the neural network. Compared to traditional methods, A-gPINN can achieve a more accurate prediction of complicated soliton structures in a larger computational domain with less training data. Using this method, the evolution of self-similar bright solitons, self-similar soliton pairs, self-similar rogue waves, and self-similar Akhmediev breathers has been successfully and accurately predicted, while the coefficient variations of the generalized non-homogeneous nonlinear Schrödinger equation have been predicted reversely. Due to the superiority of this method, it turns to be a promising neural network method for studying soliton dynamics in optical fibers, and it also has application potential in other physical fields such as nonlinear optics and Bose Einstein condensation.</description><subject>Adaptive sampling</subject><subject>Algorithms</subject><subject>Automotive Engineering</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Deep learning</subject><subject>Dynamical Systems</subject><subject>Efficiency</subject><subject>Engineering</subject><subject>Fourier transforms</subject><subject>Light</subject><subject>Mechanical Engineering</subject><subject>Neural networks</subject><subject>Nonlinear differential equations</subject><subject>Nonlinear optics</subject><subject>Numerical analysis</subject><subject>Optical fibers</subject><subject>Optics</subject><subject>Original Paper</subject><subject>Partial differential equations</subject><subject>Physics</subject><subject>Refractivity</subject><subject>Research methodology</subject><subject>Schrodinger equation</subject><subject>Self-similarity</subject><subject>Solitary waves</subject><subject>Vibration</subject><subject>Wave diffraction</subject><subject>Waveguides</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAURS0EEqXwB5gsMRuek9iOxwrxUakqHUDqZjnxS-qqTYqdAv33hAaJjekO75z7pEvINYdbDqDuIuegOIMkY6Al5EyekBEXKmWJ1MtTMgJ9PMHynFzEuAaANIF8RNpFQOfLzrcNbSsacVOx6Ld-YwP9tB8YqW9oZ3fYY7QO1vXhG4df1PmqCnYwHZYBbfRNfZTqvXdIiwPtVkgnrF5M53O6xW7VuktyVtlNxKvfHJO3x4fX-2c2e3ma3k9mrEwUdCwXiRS51oXgWDjBlUbnpLaVhRTzVFmZQyGxSrR12qnMAWQOVS6tcBnmPB2Tm6F3F9r3PcbOrNt9aPqXJgXJhcg0T3oqGagytDEGrMwu-K0NB8PB_AxrhmFNP6w5DmtkL6WDFHu4qTH8Vf9jfQMGBnw_</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Li, Lang</creator><creator>Qiu, Weixin</creator><creator>Dai, Chaoqing</creator><creator>Wang, Yueyue</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3863-6381</orcidid></search><sort><creationdate>20240601</creationdate><title>Prediction of self-similar waves in tapered graded index diffraction decreasing waveguide by the A-gPINN method</title><author>Li, Lang ; Qiu, Weixin ; Dai, Chaoqing ; Wang, Yueyue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-85265899b51ebd5179edd69afa03e837a680b6ef29ad9d74d004de786a5d4e813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptive sampling</topic><topic>Algorithms</topic><topic>Automotive Engineering</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Deep learning</topic><topic>Dynamical Systems</topic><topic>Efficiency</topic><topic>Engineering</topic><topic>Fourier transforms</topic><topic>Light</topic><topic>Mechanical Engineering</topic><topic>Neural networks</topic><topic>Nonlinear differential equations</topic><topic>Nonlinear optics</topic><topic>Numerical analysis</topic><topic>Optical fibers</topic><topic>Optics</topic><topic>Original Paper</topic><topic>Partial differential equations</topic><topic>Physics</topic><topic>Refractivity</topic><topic>Research methodology</topic><topic>Schrodinger equation</topic><topic>Self-similarity</topic><topic>Solitary waves</topic><topic>Vibration</topic><topic>Wave diffraction</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Lang</creatorcontrib><creatorcontrib>Qiu, Weixin</creatorcontrib><creatorcontrib>Dai, Chaoqing</creatorcontrib><creatorcontrib>Wang, Yueyue</creatorcontrib><collection>CrossRef</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Lang</au><au>Qiu, Weixin</au><au>Dai, Chaoqing</au><au>Wang, Yueyue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of self-similar waves in tapered graded index diffraction decreasing waveguide by the A-gPINN method</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>112</volume><issue>12</issue><spage>10319</spage><epage>10340</epage><pages>10319-10340</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>In this paper, an adaptive gradient-enhanced physics-informed neural network method(A-gPINN) is proposed to investigate the dynamics of solitons in tapered refractive index waveguides. A-gPINN method adopts adaptive sampling and incorporates the gradient information of the nonlinear partial differential equation into the neural network. Compared to traditional methods, A-gPINN can achieve a more accurate prediction of complicated soliton structures in a larger computational domain with less training data. Using this method, the evolution of self-similar bright solitons, self-similar soliton pairs, self-similar rogue waves, and self-similar Akhmediev breathers has been successfully and accurately predicted, while the coefficient variations of the generalized non-homogeneous nonlinear Schrödinger equation have been predicted reversely. Due to the superiority of this method, it turns to be a promising neural network method for studying soliton dynamics in optical fibers, and it also has application potential in other physical fields such as nonlinear optics and Bose Einstein condensation.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-024-09608-6</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-3863-6381</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-090X |
ispartof | Nonlinear dynamics, 2024-06, Vol.112 (12), p.10319-10340 |
issn | 0924-090X 1573-269X |
language | eng |
recordid | cdi_proquest_journals_3061554912 |
source | SpringerLink Journals |
subjects | Adaptive sampling Algorithms Automotive Engineering Classical Mechanics Control Deep learning Dynamical Systems Efficiency Engineering Fourier transforms Light Mechanical Engineering Neural networks Nonlinear differential equations Nonlinear optics Numerical analysis Optical fibers Optics Original Paper Partial differential equations Physics Refractivity Research methodology Schrodinger equation Self-similarity Solitary waves Vibration Wave diffraction Waveguides |
title | Prediction of self-similar waves in tapered graded index diffraction decreasing waveguide by the A-gPINN method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T03%3A49%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20self-similar%20waves%20in%20tapered%20graded%20index%20diffraction%20decreasing%20waveguide%20by%20the%20A-gPINN%20method&rft.jtitle=Nonlinear%20dynamics&rft.au=Li,%20Lang&rft.date=2024-06-01&rft.volume=112&rft.issue=12&rft.spage=10319&rft.epage=10340&rft.pages=10319-10340&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-024-09608-6&rft_dat=%3Cproquest_cross%3E3061554912%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3061554912&rft_id=info:pmid/&rfr_iscdi=true |