Prediction of self-similar waves in tapered graded index diffraction decreasing waveguide by the A-gPINN method
In this paper, an adaptive gradient-enhanced physics-informed neural network method(A-gPINN) is proposed to investigate the dynamics of solitons in tapered refractive index waveguides. A-gPINN method adopts adaptive sampling and incorporates the gradient information of the nonlinear partial differen...
Gespeichert in:
Veröffentlicht in: | Nonlinear dynamics 2024-06, Vol.112 (12), p.10319-10340 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, an adaptive gradient-enhanced physics-informed neural network method(A-gPINN) is proposed to investigate the dynamics of solitons in tapered refractive index waveguides. A-gPINN method adopts adaptive sampling and incorporates the gradient information of the nonlinear partial differential equation into the neural network. Compared to traditional methods, A-gPINN can achieve a more accurate prediction of complicated soliton structures in a larger computational domain with less training data. Using this method, the evolution of self-similar bright solitons, self-similar soliton pairs, self-similar rogue waves, and self-similar Akhmediev breathers has been successfully and accurately predicted, while the coefficient variations of the generalized non-homogeneous nonlinear Schrödinger equation have been predicted reversely. Due to the superiority of this method, it turns to be a promising neural network method for studying soliton dynamics in optical fibers, and it also has application potential in other physical fields such as nonlinear optics and Bose Einstein condensation. |
---|---|
ISSN: | 0924-090X 1573-269X |
DOI: | 10.1007/s11071-024-09608-6 |