Ce-Mn bimetallic oxide-doped SPEEK/SPPO blend composite membranes to induce high oxidative tolerance and proton conductivity for hydrogen fuel cells

Utilizing the potential of transition metals to quench free radicals in hydrogen fuel cells, we prepared cerium-manganese-based bimetallic oxide (CeMnO x ) nanostructures by alkali-aided deposition precipitation to harness as fillers in hydrocarbon-based polymer electrolyte membranes (PEMs). To impr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2024-05, Vol.12 (21), p.12628-12644
Hauptverfasser: Hossain, Sk Miraz, Patnaik, Pratyush, Sarkar, Suman, Sharma, Ritika, Chatterjee, Uma
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12644
container_issue 21
container_start_page 12628
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 12
creator Hossain, Sk Miraz
Patnaik, Pratyush
Sarkar, Suman
Sharma, Ritika
Chatterjee, Uma
description Utilizing the potential of transition metals to quench free radicals in hydrogen fuel cells, we prepared cerium-manganese-based bimetallic oxide (CeMnO x ) nanostructures by alkali-aided deposition precipitation to harness as fillers in hydrocarbon-based polymer electrolyte membranes (PEMs). To improve the stability of the PEMs, a blend of sulfonated poly ether ether ketone (SPEEK) and sulfonated poly(2,6-dimethyl-1,4-phenylene oxide) (SPPO) with different weight ratios was employed as a membrane backbone. The interfacial adhesion and coupling configuration of three-dimensional CeMnO x with sulfonic moieties of blend polyelectrolytes enhances the bound water content in the PEMs. It also constructs an extensive hydrogen bonding network with proton transport channels, uplifting the proton conductivity ( K m ) by promoting vehicular and Grotthuss-type transport. Reversible redox cycling of Ce 3+ -Ce 4+ and Mn 2+ -Mn 3+ endorses the quenching of harsh radicals and augments the oxidative stability of the membranes. Composite PEMs exhibit only 4-9% mass loss and 2-5% K m loss after exposure to Fenton's solution. SSM-73 membrane showed a peak power density of 431.2 mW cm −2 with a maximum current density of 1272.6 mA cm −2 at 75 °C in 100% RH and showed a high OCV retention of 88% over 50 h. The fuel cell performance of SSM-73 was 50% higher than that of its corresponding blend membrane, i.e. , SS-73, which showed a peak power density of 287 mW cm −2 and a maximum current density of 872.3 mA cm −2 . Utilizing CeMnO x bimetallic oxide as fillers in SPEEK/SPPO blend polymer backbone demonstrated outstanding oxidative stability and improved performance in PEMFCs.
doi_str_mv 10.1039/d4ta00470a
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3060963326</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3060963326</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-68e5348f4c44cb03d11afc88944fb5916282435e0199de0a45c9342d7d178fee3</originalsourceid><addsrcrecordid>eNpFkU1LAzEQhhdRsGgv3oWAN2E12WS3ybHU-oGVFlrPSzaZbVN2NzVJxf4Pf7BpKzqXGXif-eCdJLki-I5gKu41CxJjNsDyJOllOMfpgIni9K_m_Dzpe7_GMTjGhRC95HsE6VuHKtNCkE1jFLJfRkOq7QY0ms_G49f7-Ww2RVUDnUbKthvrTQDUQls52YFHwSLT6a0CtDLL1aFfBvMJUWggIlGQsXXjbLBdnLBno27CDtXWodVOO7uEDtVbaJCCpvGXyVktGw_933yRvD-OF6PndDJ9ehkNJ6nKOAlpwSGnjNdMMaYqTDUhslacC8bqKhekyHjGaA6YCKEBS5YrQVmmB5oMeA1AL5Kb49x428cWfCjXduu6uLKkuMCioDQrInV7pJSz3juoy40zrXS7kuByb3z5wBbDg_HDCF8fYefVH_f_GPoDun-AuA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3060963326</pqid></control><display><type>article</type><title>Ce-Mn bimetallic oxide-doped SPEEK/SPPO blend composite membranes to induce high oxidative tolerance and proton conductivity for hydrogen fuel cells</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Hossain, Sk Miraz ; Patnaik, Pratyush ; Sarkar, Suman ; Sharma, Ritika ; Chatterjee, Uma</creator><creatorcontrib>Hossain, Sk Miraz ; Patnaik, Pratyush ; Sarkar, Suman ; Sharma, Ritika ; Chatterjee, Uma</creatorcontrib><description>Utilizing the potential of transition metals to quench free radicals in hydrogen fuel cells, we prepared cerium-manganese-based bimetallic oxide (CeMnO x ) nanostructures by alkali-aided deposition precipitation to harness as fillers in hydrocarbon-based polymer electrolyte membranes (PEMs). To improve the stability of the PEMs, a blend of sulfonated poly ether ether ketone (SPEEK) and sulfonated poly(2,6-dimethyl-1,4-phenylene oxide) (SPPO) with different weight ratios was employed as a membrane backbone. The interfacial adhesion and coupling configuration of three-dimensional CeMnO x with sulfonic moieties of blend polyelectrolytes enhances the bound water content in the PEMs. It also constructs an extensive hydrogen bonding network with proton transport channels, uplifting the proton conductivity ( K m ) by promoting vehicular and Grotthuss-type transport. Reversible redox cycling of Ce 3+ -Ce 4+ and Mn 2+ -Mn 3+ endorses the quenching of harsh radicals and augments the oxidative stability of the membranes. Composite PEMs exhibit only 4-9% mass loss and 2-5% K m loss after exposure to Fenton's solution. SSM-73 membrane showed a peak power density of 431.2 mW cm −2 with a maximum current density of 1272.6 mA cm −2 at 75 °C in 100% RH and showed a high OCV retention of 88% over 50 h. The fuel cell performance of SSM-73 was 50% higher than that of its corresponding blend membrane, i.e. , SS-73, which showed a peak power density of 287 mW cm −2 and a maximum current density of 872.3 mA cm −2 . Utilizing CeMnO x bimetallic oxide as fillers in SPEEK/SPPO blend polymer backbone demonstrated outstanding oxidative stability and improved performance in PEMFCs.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d4ta00470a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Bimetals ; Bound water ; Cerium ; Conductivity ; Current density ; Electrolytic cells ; Free radicals ; Fuel cells ; Fuel technology ; Heavy metals ; Hydrogen bonding ; Hydrogen fuels ; Ketones ; Manganese ; Membranes ; Moisture content ; Polydimethyl phenylene oxide ; Polyelectrolytes ; Polymers ; Protons ; Redox properties ; Stability ; Stability augmentation ; Transition metals ; Water content</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2024-05, Vol.12 (21), p.12628-12644</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-68e5348f4c44cb03d11afc88944fb5916282435e0199de0a45c9342d7d178fee3</citedby><cites>FETCH-LOGICAL-c281t-68e5348f4c44cb03d11afc88944fb5916282435e0199de0a45c9342d7d178fee3</cites><orcidid>0000-0003-1808-0726 ; 0000-0002-1463-9265 ; 0000-0003-2036-770X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hossain, Sk Miraz</creatorcontrib><creatorcontrib>Patnaik, Pratyush</creatorcontrib><creatorcontrib>Sarkar, Suman</creatorcontrib><creatorcontrib>Sharma, Ritika</creatorcontrib><creatorcontrib>Chatterjee, Uma</creatorcontrib><title>Ce-Mn bimetallic oxide-doped SPEEK/SPPO blend composite membranes to induce high oxidative tolerance and proton conductivity for hydrogen fuel cells</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Utilizing the potential of transition metals to quench free radicals in hydrogen fuel cells, we prepared cerium-manganese-based bimetallic oxide (CeMnO x ) nanostructures by alkali-aided deposition precipitation to harness as fillers in hydrocarbon-based polymer electrolyte membranes (PEMs). To improve the stability of the PEMs, a blend of sulfonated poly ether ether ketone (SPEEK) and sulfonated poly(2,6-dimethyl-1,4-phenylene oxide) (SPPO) with different weight ratios was employed as a membrane backbone. The interfacial adhesion and coupling configuration of three-dimensional CeMnO x with sulfonic moieties of blend polyelectrolytes enhances the bound water content in the PEMs. It also constructs an extensive hydrogen bonding network with proton transport channels, uplifting the proton conductivity ( K m ) by promoting vehicular and Grotthuss-type transport. Reversible redox cycling of Ce 3+ -Ce 4+ and Mn 2+ -Mn 3+ endorses the quenching of harsh radicals and augments the oxidative stability of the membranes. Composite PEMs exhibit only 4-9% mass loss and 2-5% K m loss after exposure to Fenton's solution. SSM-73 membrane showed a peak power density of 431.2 mW cm −2 with a maximum current density of 1272.6 mA cm −2 at 75 °C in 100% RH and showed a high OCV retention of 88% over 50 h. The fuel cell performance of SSM-73 was 50% higher than that of its corresponding blend membrane, i.e. , SS-73, which showed a peak power density of 287 mW cm −2 and a maximum current density of 872.3 mA cm −2 . Utilizing CeMnO x bimetallic oxide as fillers in SPEEK/SPPO blend polymer backbone demonstrated outstanding oxidative stability and improved performance in PEMFCs.</description><subject>Bimetals</subject><subject>Bound water</subject><subject>Cerium</subject><subject>Conductivity</subject><subject>Current density</subject><subject>Electrolytic cells</subject><subject>Free radicals</subject><subject>Fuel cells</subject><subject>Fuel technology</subject><subject>Heavy metals</subject><subject>Hydrogen bonding</subject><subject>Hydrogen fuels</subject><subject>Ketones</subject><subject>Manganese</subject><subject>Membranes</subject><subject>Moisture content</subject><subject>Polydimethyl phenylene oxide</subject><subject>Polyelectrolytes</subject><subject>Polymers</subject><subject>Protons</subject><subject>Redox properties</subject><subject>Stability</subject><subject>Stability augmentation</subject><subject>Transition metals</subject><subject>Water content</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpFkU1LAzEQhhdRsGgv3oWAN2E12WS3ybHU-oGVFlrPSzaZbVN2NzVJxf4Pf7BpKzqXGXif-eCdJLki-I5gKu41CxJjNsDyJOllOMfpgIni9K_m_Dzpe7_GMTjGhRC95HsE6VuHKtNCkE1jFLJfRkOq7QY0ms_G49f7-Ww2RVUDnUbKthvrTQDUQls52YFHwSLT6a0CtDLL1aFfBvMJUWggIlGQsXXjbLBdnLBno27CDtXWodVOO7uEDtVbaJCCpvGXyVktGw_933yRvD-OF6PndDJ9ehkNJ6nKOAlpwSGnjNdMMaYqTDUhslacC8bqKhekyHjGaA6YCKEBS5YrQVmmB5oMeA1AL5Kb49x428cWfCjXduu6uLKkuMCioDQrInV7pJSz3juoy40zrXS7kuByb3z5wBbDg_HDCF8fYefVH_f_GPoDun-AuA</recordid><startdate>20240528</startdate><enddate>20240528</enddate><creator>Hossain, Sk Miraz</creator><creator>Patnaik, Pratyush</creator><creator>Sarkar, Suman</creator><creator>Sharma, Ritika</creator><creator>Chatterjee, Uma</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-1808-0726</orcidid><orcidid>https://orcid.org/0000-0002-1463-9265</orcidid><orcidid>https://orcid.org/0000-0003-2036-770X</orcidid></search><sort><creationdate>20240528</creationdate><title>Ce-Mn bimetallic oxide-doped SPEEK/SPPO blend composite membranes to induce high oxidative tolerance and proton conductivity for hydrogen fuel cells</title><author>Hossain, Sk Miraz ; Patnaik, Pratyush ; Sarkar, Suman ; Sharma, Ritika ; Chatterjee, Uma</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-68e5348f4c44cb03d11afc88944fb5916282435e0199de0a45c9342d7d178fee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bimetals</topic><topic>Bound water</topic><topic>Cerium</topic><topic>Conductivity</topic><topic>Current density</topic><topic>Electrolytic cells</topic><topic>Free radicals</topic><topic>Fuel cells</topic><topic>Fuel technology</topic><topic>Heavy metals</topic><topic>Hydrogen bonding</topic><topic>Hydrogen fuels</topic><topic>Ketones</topic><topic>Manganese</topic><topic>Membranes</topic><topic>Moisture content</topic><topic>Polydimethyl phenylene oxide</topic><topic>Polyelectrolytes</topic><topic>Polymers</topic><topic>Protons</topic><topic>Redox properties</topic><topic>Stability</topic><topic>Stability augmentation</topic><topic>Transition metals</topic><topic>Water content</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hossain, Sk Miraz</creatorcontrib><creatorcontrib>Patnaik, Pratyush</creatorcontrib><creatorcontrib>Sarkar, Suman</creatorcontrib><creatorcontrib>Sharma, Ritika</creatorcontrib><creatorcontrib>Chatterjee, Uma</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hossain, Sk Miraz</au><au>Patnaik, Pratyush</au><au>Sarkar, Suman</au><au>Sharma, Ritika</au><au>Chatterjee, Uma</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ce-Mn bimetallic oxide-doped SPEEK/SPPO blend composite membranes to induce high oxidative tolerance and proton conductivity for hydrogen fuel cells</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2024-05-28</date><risdate>2024</risdate><volume>12</volume><issue>21</issue><spage>12628</spage><epage>12644</epage><pages>12628-12644</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Utilizing the potential of transition metals to quench free radicals in hydrogen fuel cells, we prepared cerium-manganese-based bimetallic oxide (CeMnO x ) nanostructures by alkali-aided deposition precipitation to harness as fillers in hydrocarbon-based polymer electrolyte membranes (PEMs). To improve the stability of the PEMs, a blend of sulfonated poly ether ether ketone (SPEEK) and sulfonated poly(2,6-dimethyl-1,4-phenylene oxide) (SPPO) with different weight ratios was employed as a membrane backbone. The interfacial adhesion and coupling configuration of three-dimensional CeMnO x with sulfonic moieties of blend polyelectrolytes enhances the bound water content in the PEMs. It also constructs an extensive hydrogen bonding network with proton transport channels, uplifting the proton conductivity ( K m ) by promoting vehicular and Grotthuss-type transport. Reversible redox cycling of Ce 3+ -Ce 4+ and Mn 2+ -Mn 3+ endorses the quenching of harsh radicals and augments the oxidative stability of the membranes. Composite PEMs exhibit only 4-9% mass loss and 2-5% K m loss after exposure to Fenton's solution. SSM-73 membrane showed a peak power density of 431.2 mW cm −2 with a maximum current density of 1272.6 mA cm −2 at 75 °C in 100% RH and showed a high OCV retention of 88% over 50 h. The fuel cell performance of SSM-73 was 50% higher than that of its corresponding blend membrane, i.e. , SS-73, which showed a peak power density of 287 mW cm −2 and a maximum current density of 872.3 mA cm −2 . Utilizing CeMnO x bimetallic oxide as fillers in SPEEK/SPPO blend polymer backbone demonstrated outstanding oxidative stability and improved performance in PEMFCs.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4ta00470a</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-1808-0726</orcidid><orcidid>https://orcid.org/0000-0002-1463-9265</orcidid><orcidid>https://orcid.org/0000-0003-2036-770X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2024-05, Vol.12 (21), p.12628-12644
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_journals_3060963326
source Royal Society Of Chemistry Journals 2008-
subjects Bimetals
Bound water
Cerium
Conductivity
Current density
Electrolytic cells
Free radicals
Fuel cells
Fuel technology
Heavy metals
Hydrogen bonding
Hydrogen fuels
Ketones
Manganese
Membranes
Moisture content
Polydimethyl phenylene oxide
Polyelectrolytes
Polymers
Protons
Redox properties
Stability
Stability augmentation
Transition metals
Water content
title Ce-Mn bimetallic oxide-doped SPEEK/SPPO blend composite membranes to induce high oxidative tolerance and proton conductivity for hydrogen fuel cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A35%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ce-Mn%20bimetallic%20oxide-doped%20SPEEK/SPPO%20blend%20composite%20membranes%20to%20induce%20high%20oxidative%20tolerance%20and%20proton%20conductivity%20for%20hydrogen%20fuel%20cells&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Hossain,%20Sk%20Miraz&rft.date=2024-05-28&rft.volume=12&rft.issue=21&rft.spage=12628&rft.epage=12644&rft.pages=12628-12644&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d4ta00470a&rft_dat=%3Cproquest_cross%3E3060963326%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3060963326&rft_id=info:pmid/&rfr_iscdi=true