Homogenization of a Multivariate Diffusion with Semipermeable Interfaces

We study the homogenization problem for a system of stochastic differential equations with local time terms that models a multivariate diffusion in the presence of semipermeable hyperplane interfaces with oblique penetration. We show that this system has a unique weak solution and determine its weak...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of theoretical probability 2024, Vol.37 (2), p.1787-1823
Hauptverfasser: Aryasova, Olga, Pavlyukevich, Ilya, Pilipenko, Andrey
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the homogenization problem for a system of stochastic differential equations with local time terms that models a multivariate diffusion in the presence of semipermeable hyperplane interfaces with oblique penetration. We show that this system has a unique weak solution and determine its weak limit as the distances between the interfaces converge to zero. In the limit, the singular local times terms vanish and give rise to an additional regular interface-induced drift.
ISSN:0894-9840
1572-9230
DOI:10.1007/s10959-024-01317-5