Homogenization of a Multivariate Diffusion with Semipermeable Interfaces
We study the homogenization problem for a system of stochastic differential equations with local time terms that models a multivariate diffusion in the presence of semipermeable hyperplane interfaces with oblique penetration. We show that this system has a unique weak solution and determine its weak...
Gespeichert in:
Veröffentlicht in: | Journal of theoretical probability 2024, Vol.37 (2), p.1787-1823 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the homogenization problem for a system of stochastic differential equations with local time terms that models a multivariate diffusion in the presence of semipermeable hyperplane interfaces with oblique penetration. We show that this system has a unique weak solution and determine its weak limit as the distances between the interfaces converge to zero. In the limit, the singular local times terms vanish and give rise to an additional regular
interface-induced
drift. |
---|---|
ISSN: | 0894-9840 1572-9230 |
DOI: | 10.1007/s10959-024-01317-5 |