Variable-Step Euler–Maruyama Approximations of Regime-Switching Jump Diffusion Processes

Let X t , Z t t ≥ 0 be the regime-switching jump diffusion process with invariant measure μ . We aim to approximate μ using the Euler–Maruyama (EM) scheme with decreasing step sequence Γ = ( γ n ) n ∈ N . Under some appropriate dissipative conditions and uniform ellipticity assumptions on the coeffi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of theoretical probability 2024-06, Vol.37 (2), p.1597-1626
Hauptverfasser: Chen, Peng, Jin, Xinghu, Shen, Tian, Su, Zhonggen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1626
container_issue 2
container_start_page 1597
container_title Journal of theoretical probability
container_volume 37
creator Chen, Peng
Jin, Xinghu
Shen, Tian
Su, Zhonggen
description Let X t , Z t t ≥ 0 be the regime-switching jump diffusion process with invariant measure μ . We aim to approximate μ using the Euler–Maruyama (EM) scheme with decreasing step sequence Γ = ( γ n ) n ∈ N . Under some appropriate dissipative conditions and uniform ellipticity assumptions on the coefficients of the related stochastic differential equation (SDE), we show that the error between μ and the invariant measure associated with the EM scheme is bounded by O ( γ n ) . In particular, we derive a better convergence rate O ( γ n ) for the additive case and the continuous case.
doi_str_mv 10.1007/s10959-023-01253-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3060790563</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3060790563</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-b1a4941add6a9f5dd3ece7e6bb2cc2fabdf4d2c487ba9dba203a8dcbfcb25ac13</originalsourceid><addsrcrecordid>eNp9kLtOAzEQRS0EEiHwA1QrURvG9r5cRiG8FATiVdBYttcOG2Uf2LsK6fgH_pAvwbBIdFTTnHtn5iB0SOCYAGQnngBPOAbKMBCaMLzeQiOSZBRzymAbjSDnMeZ5DLtoz_slAHAOMELPT9KVUq0Mvu9MG836lXGf7x_X0vUbWclo0raueSsr2ZVN7aPGRndmUVYBX5edfinrRXTVV210Wlrb-8BEt67Rxnvj99GOlStvDn7nGD2ezR6mF3h-c345ncyxpjHvsCIy5jGRRZFKbpOiYEabzKRKUa2plaqwcUF1nGdK8kJJCkzmhVZWK5pITdgYHQ294dLX3vhOLJve1WGlYJBCxiFJWaDoQGnXeO-MFa0Lb7mNICC-HYrBoQgOxY9DsQ4hNoR8gOuFcX_V_6S-ABNxeSc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3060790563</pqid></control><display><type>article</type><title>Variable-Step Euler–Maruyama Approximations of Regime-Switching Jump Diffusion Processes</title><source>SpringerLink Journals</source><creator>Chen, Peng ; Jin, Xinghu ; Shen, Tian ; Su, Zhonggen</creator><creatorcontrib>Chen, Peng ; Jin, Xinghu ; Shen, Tian ; Su, Zhonggen</creatorcontrib><description>Let X t , Z t t ≥ 0 be the regime-switching jump diffusion process with invariant measure μ . We aim to approximate μ using the Euler–Maruyama (EM) scheme with decreasing step sequence Γ = ( γ n ) n ∈ N . Under some appropriate dissipative conditions and uniform ellipticity assumptions on the coefficients of the related stochastic differential equation (SDE), we show that the error between μ and the invariant measure associated with the EM scheme is bounded by O ( γ n ) . In particular, we derive a better convergence rate O ( γ n ) for the additive case and the continuous case.</description><identifier>ISSN: 0894-9840</identifier><identifier>EISSN: 1572-9230</identifier><identifier>DOI: 10.1007/s10959-023-01253-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Differential equations ; Ellipticity ; Error analysis ; Invariants ; Mathematics ; Mathematics and Statistics ; Probability Theory and Stochastic Processes ; Statistics ; Switching</subject><ispartof>Journal of theoretical probability, 2024-06, Vol.37 (2), p.1597-1626</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-b1a4941add6a9f5dd3ece7e6bb2cc2fabdf4d2c487ba9dba203a8dcbfcb25ac13</citedby><cites>FETCH-LOGICAL-c249t-b1a4941add6a9f5dd3ece7e6bb2cc2fabdf4d2c487ba9dba203a8dcbfcb25ac13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10959-023-01253-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10959-023-01253-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Chen, Peng</creatorcontrib><creatorcontrib>Jin, Xinghu</creatorcontrib><creatorcontrib>Shen, Tian</creatorcontrib><creatorcontrib>Su, Zhonggen</creatorcontrib><title>Variable-Step Euler–Maruyama Approximations of Regime-Switching Jump Diffusion Processes</title><title>Journal of theoretical probability</title><addtitle>J Theor Probab</addtitle><description>Let X t , Z t t ≥ 0 be the regime-switching jump diffusion process with invariant measure μ . We aim to approximate μ using the Euler–Maruyama (EM) scheme with decreasing step sequence Γ = ( γ n ) n ∈ N . Under some appropriate dissipative conditions and uniform ellipticity assumptions on the coefficients of the related stochastic differential equation (SDE), we show that the error between μ and the invariant measure associated with the EM scheme is bounded by O ( γ n ) . In particular, we derive a better convergence rate O ( γ n ) for the additive case and the continuous case.</description><subject>Differential equations</subject><subject>Ellipticity</subject><subject>Error analysis</subject><subject>Invariants</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Statistics</subject><subject>Switching</subject><issn>0894-9840</issn><issn>1572-9230</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOAzEQRS0EEiHwA1QrURvG9r5cRiG8FATiVdBYttcOG2Uf2LsK6fgH_pAvwbBIdFTTnHtn5iB0SOCYAGQnngBPOAbKMBCaMLzeQiOSZBRzymAbjSDnMeZ5DLtoz_slAHAOMELPT9KVUq0Mvu9MG836lXGf7x_X0vUbWclo0raueSsr2ZVN7aPGRndmUVYBX5edfinrRXTVV210Wlrb-8BEt67Rxnvj99GOlStvDn7nGD2ezR6mF3h-c345ncyxpjHvsCIy5jGRRZFKbpOiYEabzKRKUa2plaqwcUF1nGdK8kJJCkzmhVZWK5pITdgYHQ294dLX3vhOLJve1WGlYJBCxiFJWaDoQGnXeO-MFa0Lb7mNICC-HYrBoQgOxY9DsQ4hNoR8gOuFcX_V_6S-ABNxeSc</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Chen, Peng</creator><creator>Jin, Xinghu</creator><creator>Shen, Tian</creator><creator>Su, Zhonggen</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240601</creationdate><title>Variable-Step Euler–Maruyama Approximations of Regime-Switching Jump Diffusion Processes</title><author>Chen, Peng ; Jin, Xinghu ; Shen, Tian ; Su, Zhonggen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-b1a4941add6a9f5dd3ece7e6bb2cc2fabdf4d2c487ba9dba203a8dcbfcb25ac13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Differential equations</topic><topic>Ellipticity</topic><topic>Error analysis</topic><topic>Invariants</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Statistics</topic><topic>Switching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Peng</creatorcontrib><creatorcontrib>Jin, Xinghu</creatorcontrib><creatorcontrib>Shen, Tian</creatorcontrib><creatorcontrib>Su, Zhonggen</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of theoretical probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Peng</au><au>Jin, Xinghu</au><au>Shen, Tian</au><au>Su, Zhonggen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Variable-Step Euler–Maruyama Approximations of Regime-Switching Jump Diffusion Processes</atitle><jtitle>Journal of theoretical probability</jtitle><stitle>J Theor Probab</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>37</volume><issue>2</issue><spage>1597</spage><epage>1626</epage><pages>1597-1626</pages><issn>0894-9840</issn><eissn>1572-9230</eissn><abstract>Let X t , Z t t ≥ 0 be the regime-switching jump diffusion process with invariant measure μ . We aim to approximate μ using the Euler–Maruyama (EM) scheme with decreasing step sequence Γ = ( γ n ) n ∈ N . Under some appropriate dissipative conditions and uniform ellipticity assumptions on the coefficients of the related stochastic differential equation (SDE), we show that the error between μ and the invariant measure associated with the EM scheme is bounded by O ( γ n ) . In particular, we derive a better convergence rate O ( γ n ) for the additive case and the continuous case.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10959-023-01253-w</doi><tpages>30</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0894-9840
ispartof Journal of theoretical probability, 2024-06, Vol.37 (2), p.1597-1626
issn 0894-9840
1572-9230
language eng
recordid cdi_proquest_journals_3060790563
source SpringerLink Journals
subjects Differential equations
Ellipticity
Error analysis
Invariants
Mathematics
Mathematics and Statistics
Probability Theory and Stochastic Processes
Statistics
Switching
title Variable-Step Euler–Maruyama Approximations of Regime-Switching Jump Diffusion Processes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T10%3A43%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Variable-Step%20Euler%E2%80%93Maruyama%20Approximations%20of%20Regime-Switching%20Jump%20Diffusion%20Processes&rft.jtitle=Journal%20of%20theoretical%20probability&rft.au=Chen,%20Peng&rft.date=2024-06-01&rft.volume=37&rft.issue=2&rft.spage=1597&rft.epage=1626&rft.pages=1597-1626&rft.issn=0894-9840&rft.eissn=1572-9230&rft_id=info:doi/10.1007/s10959-023-01253-w&rft_dat=%3Cproquest_cross%3E3060790563%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3060790563&rft_id=info:pmid/&rfr_iscdi=true