Variable-Step Euler–Maruyama Approximations of Regime-Switching Jump Diffusion Processes
Let X t , Z t t ≥ 0 be the regime-switching jump diffusion process with invariant measure μ . We aim to approximate μ using the Euler–Maruyama (EM) scheme with decreasing step sequence Γ = ( γ n ) n ∈ N . Under some appropriate dissipative conditions and uniform ellipticity assumptions on the coeffi...
Gespeichert in:
Veröffentlicht in: | Journal of theoretical probability 2024-06, Vol.37 (2), p.1597-1626 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
X
t
,
Z
t
t
≥
0
be the regime-switching jump diffusion process with invariant measure
μ
. We aim to approximate
μ
using the Euler–Maruyama (EM) scheme with decreasing step sequence
Γ
=
(
γ
n
)
n
∈
N
. Under some appropriate dissipative conditions and uniform ellipticity assumptions on the coefficients of the related stochastic differential equation (SDE), we show that the error between
μ
and the invariant measure associated with the EM scheme is bounded by
O
(
γ
n
)
. In particular, we derive a better convergence rate
O
(
γ
n
)
for the additive case and the continuous case. |
---|---|
ISSN: | 0894-9840 1572-9230 |
DOI: | 10.1007/s10959-023-01253-w |