Power flow and efficiency analysis of 2K-V gear transmission via virtual power

An analytical efficiency expression for the 2K-V gearbox, which includes both rotational and revolutional power, is derived using virtual power analysis. The presence of a constant-speed ratio mechanism in the 2K-V gearbox results in certain components rotating revolution without self-rotation. New...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Meccanica (Milan) 2024, Vol.59 (5), p.811-832
Hauptverfasser: Zhu, Feihong, Song, Chaosheng, Bonaiti, Luca, Gorla, Carlo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An analytical efficiency expression for the 2K-V gearbox, which includes both rotational and revolutional power, is derived using virtual power analysis. The presence of a constant-speed ratio mechanism in the 2K-V gearbox results in certain components rotating revolution without self-rotation. New concept, the revolutional power, is introduced to address this aspect. The efficiency formula and power flow have been verified through several data sets and velocity iconography. Further analysis investigates the impact of specific design parameters on efficiency and power losses. Moreover, sensitivity weights for design parameters affecting total efficiency are identified using machine learning and an optimal parameter range for their optimization is established. Design recommendations aimed at enhancing efficiency are provided. The results show that the losses at the meshes are significantly lower when the ratio of the first stage gearing is set to speed-up rather than speed-down. The smaller the difference in the number of teeth in the second stage gearing, the greater the power losses at the meshes. In the majority of speed ratio scenarios, the second-stage gear pair will experience significant meshing losses as virtual power flows through it. The design parameters related to the second-stage gearing have a significant effect on the overall system efficiency.
ISSN:0025-6455
1572-9648
DOI:10.1007/s11012-023-01743-5