An injectable fluorescent and iodinated hydrogel for preoperative localization and dual image-guided surgery of pulmonary nodules

The widespread use of video-assisted thoracoscopic surgery (VATS) has triggered the rapid expansion in the field of computed tomography (CT)-guided preoperative localization and near-infrared (NIR) fluorescence image-guided surgery. However, its broader application has been hindered by the absence o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials science 2024-05, Vol.12 (11), p.2943-295
Hauptverfasser: Back, Woojin, Rho, Jiyun, Kim, Kyungsu, Yong, Hwan Seok, Jeon, Ok Hwa, Choi, Byeong Hyeon, Kim, Hyun Koo, Park, Ji-Ho
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The widespread use of video-assisted thoracoscopic surgery (VATS) has triggered the rapid expansion in the field of computed tomography (CT)-guided preoperative localization and near-infrared (NIR) fluorescence image-guided surgery. However, its broader application has been hindered by the absence of ideal imaging contrasts that are biocompatible, minimally invasive, highly resolvable, and perfectly localized within the diseased tissue. To achieve this goal, we synthesize a dextran-based fluorescent and iodinated hydrogel, which can be injected into the tissue and imaged with both CT and NIR fluorescence modalities. By finely tuning the physical parameters such as gelation time and composition of iodinated oil (X-ray contrast agent) and indocyanine green (ICG, NIR fluorescence dye), we optimize the hydrogel for prolonged localization at the injected site without losing the dual-imaging capability. We validate the effectiveness of the developed injectable dual-imaging platform by performing image-guided resection of pulmonary nodules on tumor-bearing rabbits, which are preoperatively localized with the hydrogel. The injectable dual-imaging marker, therefore, can emerge as a powerful tool for surgical guidance. We report the development of an injectable hydrogel-based dual computed tomography (CT) and near-infrared (NIR) imaging marker for use in preoperative pulmonary localization and intraoperative dual-imaging of deep-seated nodules.
ISSN:2047-4830
2047-4849
DOI:10.1039/d4bm00035h