A Worked out Galois Group for the Classroom

Let f = X6 − 3X2 − 1 ∈ Q[X] and let Lf be the splitting field of f over Q. We show by hand that the Galois group Gal(Lf /Q) of the Galois extension Lf /Q is isomorphic to the alternating group A4. Moreover, we show that the six roots of f correspond to the six edges of a tetrahedron and that the fou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The American mathematical monthly 2024-07, Vol.131 (6), p.501-510
Hauptverfasser: Halbeisen, Lorenz, Hungerbühler, Norbert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let f = X6 − 3X2 − 1 ∈ Q[X] and let Lf be the splitting field of f over Q. We show by hand that the Galois group Gal(Lf /Q) of the Galois extension Lf /Q is isomorphic to the alternating group A4. Moreover, we show that the six roots of f correspond to the six edges of a tetrahedron and that the four roots of the polynomial X4 + 18X2 − 72X + 81 correspond to the four faces of a tetrahedron, which allows us to determine all eight proper intermediate fields of the extension Lf /Q.
ISSN:0002-9890
1930-0972
DOI:10.1080/00029890.2024.2325330