A Worked out Galois Group for the Classroom
Let f = X6 − 3X2 − 1 ∈ Q[X] and let Lf be the splitting field of f over Q. We show by hand that the Galois group Gal(Lf /Q) of the Galois extension Lf /Q is isomorphic to the alternating group A4. Moreover, we show that the six roots of f correspond to the six edges of a tetrahedron and that the fou...
Gespeichert in:
Veröffentlicht in: | The American mathematical monthly 2024-07, Vol.131 (6), p.501-510 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let f = X6 − 3X2 − 1 ∈ Q[X] and let Lf be the splitting field of f over Q. We show by hand that the Galois group Gal(Lf /Q) of the Galois extension Lf /Q is isomorphic to the alternating group A4. Moreover, we show that the six roots of f correspond to the six edges of a tetrahedron and that the four roots of the polynomial X4 + 18X2 − 72X + 81 correspond to the four faces of a tetrahedron, which allows us to determine all eight proper intermediate fields of the extension Lf /Q. |
---|---|
ISSN: | 0002-9890 1930-0972 |
DOI: | 10.1080/00029890.2024.2325330 |