Catalytic properties of TiO2 nanofibers in CO2 conversion: a comparative analysis of polymer matrices

The quest for efficient and sustainable methods to mitigate carbon dioxide (CO 2 ) emissions is a pressing global challenge. This study delves into the crucial role of polymers in tailoring the performance of titanium dioxide (TiO 2 ) nanofibers for CO 2 conversion reactions. By systematically compa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology 2024-06, Vol.26 (6), p.115, Article 115
Hauptverfasser: Gehlot, Karan, Kothari, Anil Chandra, Tiwari, Sangeeta, Bal, Rajaram, Tiwari, Sandeep Kumar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The quest for efficient and sustainable methods to mitigate carbon dioxide (CO 2 ) emissions is a pressing global challenge. This study delves into the crucial role of polymers in tailoring the performance of titanium dioxide (TiO 2 ) nanofibers for CO 2 conversion reactions. By systematically comparing the influence of different polymers, specifically polyvinyl pyrrolidone (PVP) and polyvinylidene fluoride (PVDF), on the CO 2 conversion activity of TiO 2 -NFs, we shed light on the remarkable potential of polymeric selection to fine-tune catalyst properties. The paper uses advanced experimental techniques to analyze the structural and morphological properties of PVP-TiO 2 -NFs and PVDF- TiO 2 -NFs demonstrating their various morphologies. The investigation involves SEM, XRD, BET, Raman, and UV-Vis spectroscopy to better understand the charge separation and recombination processes involved in both materials’ CO 2 conversion. The results show considerable differences, the choice of polymer significantly impacts the CO 2 conversion performance of TiO 2 -NFs. PVP-based NFs exhibit enhanced surface area and porosity, resulting in superior catalytic activity, while PVDF-based NFs demonstrate remarkable stability. These findings pave the way for innovative approaches to tackle climate change and develop a more environmentally friendly future by advancing energy-efficient and long-lasting photocatalytic technology.
ISSN:1388-0764
1572-896X
DOI:10.1007/s11051-024-06033-z