Connection probabilities of multiple FK-Ising interfaces

We find the scaling limits of a general class of boundary-to-boundary connection probabilities and multiple interfaces in the critical planar FK-Ising model, thus verifying predictions from the physics literature. We also discuss conjectural formulas using Coulomb gas integrals for the corresponding...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Probability theory and related fields 2024-06, Vol.189 (1-2), p.281-367
Hauptverfasser: Feng, Yu, Peltola, Eveliina, Wu, Hao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 367
container_issue 1-2
container_start_page 281
container_title Probability theory and related fields
container_volume 189
creator Feng, Yu
Peltola, Eveliina
Wu, Hao
description We find the scaling limits of a general class of boundary-to-boundary connection probabilities and multiple interfaces in the critical planar FK-Ising model, thus verifying predictions from the physics literature. We also discuss conjectural formulas using Coulomb gas integrals for the corresponding quantities in general critical planar random-cluster models with cluster-weight q ∈ [ 1 , 4 ) . Thus far, proofs for convergence, including ours, rely on discrete complex analysis techniques and are beyond reach for other values of q than the FK-Ising model ( q = 2 ). Given the convergence of interfaces, the conjectural formulas for other values of q could be verified similarly with relatively minor technical work. The limit interfaces are variants of SLE κ curves (with κ = 16 / 3 for q = 2 ). Their partition functions, that give the connection probabilities, also satisfy properties predicted for correlation functions in conformal field theory (CFT), expected to describe scaling limits of critical random-cluster models. We verify these properties for all q ∈ [ 1 , 4 ) , thus providing further evidence of the expected CFT description of these models.
doi_str_mv 10.1007/s00440-024-01269-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3060078522</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3060078522</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-6c30f3fbd8a7465b576e7e11d7bdb0b1dd94c668b6c1e74395d948f2c75394d03</originalsourceid><addsrcrecordid>eNp9kEFLxDAQhYMouK7-AU8Fz9GZJE3aoyyuigte9ByaNFmydNM16R7890YrePM0MLz3Zt5HyDXCLQKouwwgBFBgggIy2VI8IQsUnFEGUpySBaBqaAM1npOLnHcAwLhgC9KsxhidncIYq0MaTWfCEKbgcjX6an8cpnAYXLV-oc85xG0V4uSS76zLl-TMd0N2V79zSd7XD2-rJ7p5fXxe3W-o5SgmKi0Hz73pm04JWZtaSaccYq9Mb8Bg37fCStkYadEpwdu6LBrPrKp5K3rgS3Iz55bvPo4uT3o3HlMsJzUHWbo3NWNFxWaVTWPOyXl9SGHfpU-NoL8J6ZmQLoT0DyGNxcRnUy7iuHXpL_of1xfRDWfd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3060078522</pqid></control><display><type>article</type><title>Connection probabilities of multiple FK-Ising interfaces</title><source>SpringerLink Journals</source><creator>Feng, Yu ; Peltola, Eveliina ; Wu, Hao</creator><creatorcontrib>Feng, Yu ; Peltola, Eveliina ; Wu, Hao</creatorcontrib><description>We find the scaling limits of a general class of boundary-to-boundary connection probabilities and multiple interfaces in the critical planar FK-Ising model, thus verifying predictions from the physics literature. We also discuss conjectural formulas using Coulomb gas integrals for the corresponding quantities in general critical planar random-cluster models with cluster-weight q ∈ [ 1 , 4 ) . Thus far, proofs for convergence, including ours, rely on discrete complex analysis techniques and are beyond reach for other values of q than the FK-Ising model ( q = 2 ). Given the convergence of interfaces, the conjectural formulas for other values of q could be verified similarly with relatively minor technical work. The limit interfaces are variants of SLE κ curves (with κ = 16 / 3 for q = 2 ). Their partition functions, that give the connection probabilities, also satisfy properties predicted for correlation functions in conformal field theory (CFT), expected to describe scaling limits of critical random-cluster models. We verify these properties for all q ∈ [ 1 , 4 ) , thus providing further evidence of the expected CFT description of these models.</description><identifier>ISSN: 0178-8051</identifier><identifier>EISSN: 1432-2064</identifier><identifier>DOI: 10.1007/s00440-024-01269-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied mathematics ; Clusters ; Convergence ; Correlation ; Economics ; Field theory ; Finance ; Insurance ; Ising model ; Management ; Mathematical and Computational Biology ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Operations Research/Decision Theory ; Partitions (mathematics) ; Phase transitions ; Probability ; Probability Theory and Stochastic Processes ; Quantitative Finance ; Statistics for Business ; Terminology ; Theoretical</subject><ispartof>Probability theory and related fields, 2024-06, Vol.189 (1-2), p.281-367</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-6c30f3fbd8a7465b576e7e11d7bdb0b1dd94c668b6c1e74395d948f2c75394d03</cites><orcidid>0000-0003-4265-7417</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00440-024-01269-1$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00440-024-01269-1$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Feng, Yu</creatorcontrib><creatorcontrib>Peltola, Eveliina</creatorcontrib><creatorcontrib>Wu, Hao</creatorcontrib><title>Connection probabilities of multiple FK-Ising interfaces</title><title>Probability theory and related fields</title><addtitle>Probab. Theory Relat. Fields</addtitle><description>We find the scaling limits of a general class of boundary-to-boundary connection probabilities and multiple interfaces in the critical planar FK-Ising model, thus verifying predictions from the physics literature. We also discuss conjectural formulas using Coulomb gas integrals for the corresponding quantities in general critical planar random-cluster models with cluster-weight q ∈ [ 1 , 4 ) . Thus far, proofs for convergence, including ours, rely on discrete complex analysis techniques and are beyond reach for other values of q than the FK-Ising model ( q = 2 ). Given the convergence of interfaces, the conjectural formulas for other values of q could be verified similarly with relatively minor technical work. The limit interfaces are variants of SLE κ curves (with κ = 16 / 3 for q = 2 ). Their partition functions, that give the connection probabilities, also satisfy properties predicted for correlation functions in conformal field theory (CFT), expected to describe scaling limits of critical random-cluster models. We verify these properties for all q ∈ [ 1 , 4 ) , thus providing further evidence of the expected CFT description of these models.</description><subject>Applied mathematics</subject><subject>Clusters</subject><subject>Convergence</subject><subject>Correlation</subject><subject>Economics</subject><subject>Field theory</subject><subject>Finance</subject><subject>Insurance</subject><subject>Ising model</subject><subject>Management</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations Research/Decision Theory</subject><subject>Partitions (mathematics)</subject><subject>Phase transitions</subject><subject>Probability</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Quantitative Finance</subject><subject>Statistics for Business</subject><subject>Terminology</subject><subject>Theoretical</subject><issn>0178-8051</issn><issn>1432-2064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kEFLxDAQhYMouK7-AU8Fz9GZJE3aoyyuigte9ByaNFmydNM16R7890YrePM0MLz3Zt5HyDXCLQKouwwgBFBgggIy2VI8IQsUnFEGUpySBaBqaAM1npOLnHcAwLhgC9KsxhidncIYq0MaTWfCEKbgcjX6an8cpnAYXLV-oc85xG0V4uSS76zLl-TMd0N2V79zSd7XD2-rJ7p5fXxe3W-o5SgmKi0Hz73pm04JWZtaSaccYq9Mb8Bg37fCStkYadEpwdu6LBrPrKp5K3rgS3Iz55bvPo4uT3o3HlMsJzUHWbo3NWNFxWaVTWPOyXl9SGHfpU-NoL8J6ZmQLoT0DyGNxcRnUy7iuHXpL_of1xfRDWfd</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Feng, Yu</creator><creator>Peltola, Eveliina</creator><creator>Wu, Hao</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4265-7417</orcidid></search><sort><creationdate>20240601</creationdate><title>Connection probabilities of multiple FK-Ising interfaces</title><author>Feng, Yu ; Peltola, Eveliina ; Wu, Hao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-6c30f3fbd8a7465b576e7e11d7bdb0b1dd94c668b6c1e74395d948f2c75394d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Applied mathematics</topic><topic>Clusters</topic><topic>Convergence</topic><topic>Correlation</topic><topic>Economics</topic><topic>Field theory</topic><topic>Finance</topic><topic>Insurance</topic><topic>Ising model</topic><topic>Management</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations Research/Decision Theory</topic><topic>Partitions (mathematics)</topic><topic>Phase transitions</topic><topic>Probability</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Quantitative Finance</topic><topic>Statistics for Business</topic><topic>Terminology</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Yu</creatorcontrib><creatorcontrib>Peltola, Eveliina</creatorcontrib><creatorcontrib>Wu, Hao</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Probability theory and related fields</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, Yu</au><au>Peltola, Eveliina</au><au>Wu, Hao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Connection probabilities of multiple FK-Ising interfaces</atitle><jtitle>Probability theory and related fields</jtitle><stitle>Probab. Theory Relat. Fields</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>189</volume><issue>1-2</issue><spage>281</spage><epage>367</epage><pages>281-367</pages><issn>0178-8051</issn><eissn>1432-2064</eissn><abstract>We find the scaling limits of a general class of boundary-to-boundary connection probabilities and multiple interfaces in the critical planar FK-Ising model, thus verifying predictions from the physics literature. We also discuss conjectural formulas using Coulomb gas integrals for the corresponding quantities in general critical planar random-cluster models with cluster-weight q ∈ [ 1 , 4 ) . Thus far, proofs for convergence, including ours, rely on discrete complex analysis techniques and are beyond reach for other values of q than the FK-Ising model ( q = 2 ). Given the convergence of interfaces, the conjectural formulas for other values of q could be verified similarly with relatively minor technical work. The limit interfaces are variants of SLE κ curves (with κ = 16 / 3 for q = 2 ). Their partition functions, that give the connection probabilities, also satisfy properties predicted for correlation functions in conformal field theory (CFT), expected to describe scaling limits of critical random-cluster models. We verify these properties for all q ∈ [ 1 , 4 ) , thus providing further evidence of the expected CFT description of these models.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00440-024-01269-1</doi><tpages>87</tpages><orcidid>https://orcid.org/0000-0003-4265-7417</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0178-8051
ispartof Probability theory and related fields, 2024-06, Vol.189 (1-2), p.281-367
issn 0178-8051
1432-2064
language eng
recordid cdi_proquest_journals_3060078522
source SpringerLink Journals
subjects Applied mathematics
Clusters
Convergence
Correlation
Economics
Field theory
Finance
Insurance
Ising model
Management
Mathematical and Computational Biology
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Operations Research/Decision Theory
Partitions (mathematics)
Phase transitions
Probability
Probability Theory and Stochastic Processes
Quantitative Finance
Statistics for Business
Terminology
Theoretical
title Connection probabilities of multiple FK-Ising interfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T07%3A32%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Connection%20probabilities%20of%20multiple%20FK-Ising%20interfaces&rft.jtitle=Probability%20theory%20and%20related%20fields&rft.au=Feng,%20Yu&rft.date=2024-06-01&rft.volume=189&rft.issue=1-2&rft.spage=281&rft.epage=367&rft.pages=281-367&rft.issn=0178-8051&rft.eissn=1432-2064&rft_id=info:doi/10.1007/s00440-024-01269-1&rft_dat=%3Cproquest_cross%3E3060078522%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3060078522&rft_id=info:pmid/&rfr_iscdi=true