Connection probabilities of multiple FK-Ising interfaces
We find the scaling limits of a general class of boundary-to-boundary connection probabilities and multiple interfaces in the critical planar FK-Ising model, thus verifying predictions from the physics literature. We also discuss conjectural formulas using Coulomb gas integrals for the corresponding...
Gespeichert in:
Veröffentlicht in: | Probability theory and related fields 2024-06, Vol.189 (1-2), p.281-367 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 367 |
---|---|
container_issue | 1-2 |
container_start_page | 281 |
container_title | Probability theory and related fields |
container_volume | 189 |
creator | Feng, Yu Peltola, Eveliina Wu, Hao |
description | We find the scaling limits of a general class of boundary-to-boundary connection probabilities and multiple interfaces in the critical planar FK-Ising model, thus verifying predictions from the physics literature. We also discuss conjectural formulas using Coulomb gas integrals for the corresponding quantities in general critical planar random-cluster models with cluster-weight
q
∈
[
1
,
4
)
. Thus far, proofs for convergence, including ours, rely on discrete complex analysis techniques and are beyond reach for other values of
q
than the FK-Ising model (
q
=
2
). Given the convergence of interfaces, the conjectural formulas for other values of
q
could be verified similarly with relatively minor technical work. The limit interfaces are variants of
SLE
κ
curves (with
κ
=
16
/
3
for
q
=
2
). Their partition functions, that give the connection probabilities, also satisfy properties predicted for correlation functions in conformal field theory (CFT), expected to describe scaling limits of critical random-cluster models. We verify these properties for all
q
∈
[
1
,
4
)
, thus providing further evidence of the expected CFT description of these models. |
doi_str_mv | 10.1007/s00440-024-01269-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3060078522</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3060078522</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-6c30f3fbd8a7465b576e7e11d7bdb0b1dd94c668b6c1e74395d948f2c75394d03</originalsourceid><addsrcrecordid>eNp9kEFLxDAQhYMouK7-AU8Fz9GZJE3aoyyuigte9ByaNFmydNM16R7890YrePM0MLz3Zt5HyDXCLQKouwwgBFBgggIy2VI8IQsUnFEGUpySBaBqaAM1npOLnHcAwLhgC9KsxhidncIYq0MaTWfCEKbgcjX6an8cpnAYXLV-oc85xG0V4uSS76zLl-TMd0N2V79zSd7XD2-rJ7p5fXxe3W-o5SgmKi0Hz73pm04JWZtaSaccYq9Mb8Bg37fCStkYadEpwdu6LBrPrKp5K3rgS3Iz55bvPo4uT3o3HlMsJzUHWbo3NWNFxWaVTWPOyXl9SGHfpU-NoL8J6ZmQLoT0DyGNxcRnUy7iuHXpL_of1xfRDWfd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3060078522</pqid></control><display><type>article</type><title>Connection probabilities of multiple FK-Ising interfaces</title><source>SpringerLink Journals</source><creator>Feng, Yu ; Peltola, Eveliina ; Wu, Hao</creator><creatorcontrib>Feng, Yu ; Peltola, Eveliina ; Wu, Hao</creatorcontrib><description>We find the scaling limits of a general class of boundary-to-boundary connection probabilities and multiple interfaces in the critical planar FK-Ising model, thus verifying predictions from the physics literature. We also discuss conjectural formulas using Coulomb gas integrals for the corresponding quantities in general critical planar random-cluster models with cluster-weight
q
∈
[
1
,
4
)
. Thus far, proofs for convergence, including ours, rely on discrete complex analysis techniques and are beyond reach for other values of
q
than the FK-Ising model (
q
=
2
). Given the convergence of interfaces, the conjectural formulas for other values of
q
could be verified similarly with relatively minor technical work. The limit interfaces are variants of
SLE
κ
curves (with
κ
=
16
/
3
for
q
=
2
). Their partition functions, that give the connection probabilities, also satisfy properties predicted for correlation functions in conformal field theory (CFT), expected to describe scaling limits of critical random-cluster models. We verify these properties for all
q
∈
[
1
,
4
)
, thus providing further evidence of the expected CFT description of these models.</description><identifier>ISSN: 0178-8051</identifier><identifier>EISSN: 1432-2064</identifier><identifier>DOI: 10.1007/s00440-024-01269-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied mathematics ; Clusters ; Convergence ; Correlation ; Economics ; Field theory ; Finance ; Insurance ; Ising model ; Management ; Mathematical and Computational Biology ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Operations Research/Decision Theory ; Partitions (mathematics) ; Phase transitions ; Probability ; Probability Theory and Stochastic Processes ; Quantitative Finance ; Statistics for Business ; Terminology ; Theoretical</subject><ispartof>Probability theory and related fields, 2024-06, Vol.189 (1-2), p.281-367</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-6c30f3fbd8a7465b576e7e11d7bdb0b1dd94c668b6c1e74395d948f2c75394d03</cites><orcidid>0000-0003-4265-7417</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00440-024-01269-1$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00440-024-01269-1$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Feng, Yu</creatorcontrib><creatorcontrib>Peltola, Eveliina</creatorcontrib><creatorcontrib>Wu, Hao</creatorcontrib><title>Connection probabilities of multiple FK-Ising interfaces</title><title>Probability theory and related fields</title><addtitle>Probab. Theory Relat. Fields</addtitle><description>We find the scaling limits of a general class of boundary-to-boundary connection probabilities and multiple interfaces in the critical planar FK-Ising model, thus verifying predictions from the physics literature. We also discuss conjectural formulas using Coulomb gas integrals for the corresponding quantities in general critical planar random-cluster models with cluster-weight
q
∈
[
1
,
4
)
. Thus far, proofs for convergence, including ours, rely on discrete complex analysis techniques and are beyond reach for other values of
q
than the FK-Ising model (
q
=
2
). Given the convergence of interfaces, the conjectural formulas for other values of
q
could be verified similarly with relatively minor technical work. The limit interfaces are variants of
SLE
κ
curves (with
κ
=
16
/
3
for
q
=
2
). Their partition functions, that give the connection probabilities, also satisfy properties predicted for correlation functions in conformal field theory (CFT), expected to describe scaling limits of critical random-cluster models. We verify these properties for all
q
∈
[
1
,
4
)
, thus providing further evidence of the expected CFT description of these models.</description><subject>Applied mathematics</subject><subject>Clusters</subject><subject>Convergence</subject><subject>Correlation</subject><subject>Economics</subject><subject>Field theory</subject><subject>Finance</subject><subject>Insurance</subject><subject>Ising model</subject><subject>Management</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations Research/Decision Theory</subject><subject>Partitions (mathematics)</subject><subject>Phase transitions</subject><subject>Probability</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Quantitative Finance</subject><subject>Statistics for Business</subject><subject>Terminology</subject><subject>Theoretical</subject><issn>0178-8051</issn><issn>1432-2064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kEFLxDAQhYMouK7-AU8Fz9GZJE3aoyyuigte9ByaNFmydNM16R7890YrePM0MLz3Zt5HyDXCLQKouwwgBFBgggIy2VI8IQsUnFEGUpySBaBqaAM1npOLnHcAwLhgC9KsxhidncIYq0MaTWfCEKbgcjX6an8cpnAYXLV-oc85xG0V4uSS76zLl-TMd0N2V79zSd7XD2-rJ7p5fXxe3W-o5SgmKi0Hz73pm04JWZtaSaccYq9Mb8Bg37fCStkYadEpwdu6LBrPrKp5K3rgS3Iz55bvPo4uT3o3HlMsJzUHWbo3NWNFxWaVTWPOyXl9SGHfpU-NoL8J6ZmQLoT0DyGNxcRnUy7iuHXpL_of1xfRDWfd</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Feng, Yu</creator><creator>Peltola, Eveliina</creator><creator>Wu, Hao</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4265-7417</orcidid></search><sort><creationdate>20240601</creationdate><title>Connection probabilities of multiple FK-Ising interfaces</title><author>Feng, Yu ; Peltola, Eveliina ; Wu, Hao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-6c30f3fbd8a7465b576e7e11d7bdb0b1dd94c668b6c1e74395d948f2c75394d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Applied mathematics</topic><topic>Clusters</topic><topic>Convergence</topic><topic>Correlation</topic><topic>Economics</topic><topic>Field theory</topic><topic>Finance</topic><topic>Insurance</topic><topic>Ising model</topic><topic>Management</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations Research/Decision Theory</topic><topic>Partitions (mathematics)</topic><topic>Phase transitions</topic><topic>Probability</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Quantitative Finance</topic><topic>Statistics for Business</topic><topic>Terminology</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Yu</creatorcontrib><creatorcontrib>Peltola, Eveliina</creatorcontrib><creatorcontrib>Wu, Hao</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Probability theory and related fields</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, Yu</au><au>Peltola, Eveliina</au><au>Wu, Hao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Connection probabilities of multiple FK-Ising interfaces</atitle><jtitle>Probability theory and related fields</jtitle><stitle>Probab. Theory Relat. Fields</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>189</volume><issue>1-2</issue><spage>281</spage><epage>367</epage><pages>281-367</pages><issn>0178-8051</issn><eissn>1432-2064</eissn><abstract>We find the scaling limits of a general class of boundary-to-boundary connection probabilities and multiple interfaces in the critical planar FK-Ising model, thus verifying predictions from the physics literature. We also discuss conjectural formulas using Coulomb gas integrals for the corresponding quantities in general critical planar random-cluster models with cluster-weight
q
∈
[
1
,
4
)
. Thus far, proofs for convergence, including ours, rely on discrete complex analysis techniques and are beyond reach for other values of
q
than the FK-Ising model (
q
=
2
). Given the convergence of interfaces, the conjectural formulas for other values of
q
could be verified similarly with relatively minor technical work. The limit interfaces are variants of
SLE
κ
curves (with
κ
=
16
/
3
for
q
=
2
). Their partition functions, that give the connection probabilities, also satisfy properties predicted for correlation functions in conformal field theory (CFT), expected to describe scaling limits of critical random-cluster models. We verify these properties for all
q
∈
[
1
,
4
)
, thus providing further evidence of the expected CFT description of these models.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00440-024-01269-1</doi><tpages>87</tpages><orcidid>https://orcid.org/0000-0003-4265-7417</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0178-8051 |
ispartof | Probability theory and related fields, 2024-06, Vol.189 (1-2), p.281-367 |
issn | 0178-8051 1432-2064 |
language | eng |
recordid | cdi_proquest_journals_3060078522 |
source | SpringerLink Journals |
subjects | Applied mathematics Clusters Convergence Correlation Economics Field theory Finance Insurance Ising model Management Mathematical and Computational Biology Mathematical and Computational Physics Mathematics Mathematics and Statistics Operations Research/Decision Theory Partitions (mathematics) Phase transitions Probability Probability Theory and Stochastic Processes Quantitative Finance Statistics for Business Terminology Theoretical |
title | Connection probabilities of multiple FK-Ising interfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T07%3A32%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Connection%20probabilities%20of%20multiple%20FK-Ising%20interfaces&rft.jtitle=Probability%20theory%20and%20related%20fields&rft.au=Feng,%20Yu&rft.date=2024-06-01&rft.volume=189&rft.issue=1-2&rft.spage=281&rft.epage=367&rft.pages=281-367&rft.issn=0178-8051&rft.eissn=1432-2064&rft_id=info:doi/10.1007/s00440-024-01269-1&rft_dat=%3Cproquest_cross%3E3060078522%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3060078522&rft_id=info:pmid/&rfr_iscdi=true |