Connection probabilities of multiple FK-Ising interfaces

We find the scaling limits of a general class of boundary-to-boundary connection probabilities and multiple interfaces in the critical planar FK-Ising model, thus verifying predictions from the physics literature. We also discuss conjectural formulas using Coulomb gas integrals for the corresponding...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Probability theory and related fields 2024-06, Vol.189 (1-2), p.281-367
Hauptverfasser: Feng, Yu, Peltola, Eveliina, Wu, Hao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We find the scaling limits of a general class of boundary-to-boundary connection probabilities and multiple interfaces in the critical planar FK-Ising model, thus verifying predictions from the physics literature. We also discuss conjectural formulas using Coulomb gas integrals for the corresponding quantities in general critical planar random-cluster models with cluster-weight q ∈ [ 1 , 4 ) . Thus far, proofs for convergence, including ours, rely on discrete complex analysis techniques and are beyond reach for other values of q than the FK-Ising model ( q = 2 ). Given the convergence of interfaces, the conjectural formulas for other values of q could be verified similarly with relatively minor technical work. The limit interfaces are variants of SLE κ curves (with κ = 16 / 3 for q = 2 ). Their partition functions, that give the connection probabilities, also satisfy properties predicted for correlation functions in conformal field theory (CFT), expected to describe scaling limits of critical random-cluster models. We verify these properties for all q ∈ [ 1 , 4 ) , thus providing further evidence of the expected CFT description of these models.
ISSN:0178-8051
1432-2064
DOI:10.1007/s00440-024-01269-1