Response of Streamflow to Future Land Use and Cover Change and Climate Change in the Source Region of the Yellow River
This study utilizes meteorological and leaf area index (LAI) data for three shared socioeconomic pathways (SSP1–2.6, SSP2–4.5, and SSP5–8.5) from four general circulation models (GCMs) of the sixth climate model intercomparison project (CMIP6) spanning from 2015 to 2099. Employing calibrated data an...
Gespeichert in:
Veröffentlicht in: | Water (Basel) 2024-05, Vol.16 (10), p.1332 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study utilizes meteorological and leaf area index (LAI) data for three shared socioeconomic pathways (SSP1–2.6, SSP2–4.5, and SSP5–8.5) from four general circulation models (GCMs) of the sixth climate model intercomparison project (CMIP6) spanning from 2015 to 2099. Employing calibrated data and incorporating future land use data under three SSPs, the distributed hydrology soil vegetation model (DHSVM) is employed to simulate streamflow in the source region of the Yellow River (SRYR). The research aims to elucidate variations in streamflow across different future scenarios and to estimate extreme streamflow events and temporal distribution changes under future land use and cover change (LUCC) and climate change scenarios. The main conclusions are as follows: The grassland status in the SRYR will significantly improve from 2020 to 2099, with noticeable increases in temperature, precipitation, and longwave radiation, alongside a pronounced decrease in wind speed. The probability of flooding events increases in the future, although the magnitude of the increase diminishes over time. Both LUCC and climate change contribute to an increase in the multi-year average streamflow in the region, with respective increments of 48.8%, 24.5%, and 18.9% under SSP1–2.6, SSP2–4.5, and SSP5–8.5. Notably, the fluctuation in streamflow is most pronounced under SSP5–8.5. In SSP1–2.6, the increase in streamflow during the near future (2020–2059) exceeds that of the distant future (2059–2099). Seasonal variations in streamflow intensify across most scenarios, leading to a more uneven distribution of streamflow throughout the year and an extension of the flood season. |
---|---|
ISSN: | 2073-4441 2073-4441 |
DOI: | 10.3390/w16101332 |