Reservoir characterization reimagined: a hybrid neural network approach for direct three-dimensional petrophysical property characterization

Reservoir characterization, crucial for oilfield development, aims to unravel intricate non-linear relationships within real-world data. Conventional methods, rooted in simplistic theories, often lead to uncertainties and inaccuracies in workflows. Leveraging the power of deep learning, this study i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbonates and evaporites 2024-09, Vol.39 (3), p.67, Article 67
Hauptverfasser: Mahzad, Matin, Riahi, Mohammad Ali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Reservoir characterization, crucial for oilfield development, aims to unravel intricate non-linear relationships within real-world data. Conventional methods, rooted in simplistic theories, often lead to uncertainties and inaccuracies in workflows. Leveraging the power of deep learning, this study introduces a pioneering approach: a hybrid neural network model merging convolutional and Long Short-Term Memory (LSTM) RNN layers. Focused on effective porosity modeling for the Ghar Member of the Asmari Formation in western Iran, the study utilizes post-stack seismic data and well-log information. By effectively deciphering spatio-temporal information within the data, our methodology allows for spatially aware predictions of effective porosity values, a capability not addressed by previous studies. The hybrid neural network model predicts effective porosity values for the entire reservoir, creating a 3D grid of porosity. It leverages CNN and RNN layers to decipher spatio-temporal information within the data, thereby enabling the model to make spatially aware predictions. The model achieved a mean squared error (MSE) of 0.005, generating clear 3D porosity models with greater detail compared to traditional machine learning and geostatistical methods. This innovative methodology represents a step forward in reservoir characterization, offering improved precision and efficiency. It holds promise for advancing oilfield development practices in the future.
ISSN:0891-2556
1878-5212
DOI:10.1007/s13146-024-00975-0