Reservoir characterization reimagined: a hybrid neural network approach for direct three-dimensional petrophysical property characterization
Reservoir characterization, crucial for oilfield development, aims to unravel intricate non-linear relationships within real-world data. Conventional methods, rooted in simplistic theories, often lead to uncertainties and inaccuracies in workflows. Leveraging the power of deep learning, this study i...
Gespeichert in:
Veröffentlicht in: | Carbonates and evaporites 2024-09, Vol.39 (3), p.67, Article 67 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Reservoir characterization, crucial for oilfield development, aims to unravel intricate non-linear relationships within real-world data. Conventional methods, rooted in simplistic theories, often lead to uncertainties and inaccuracies in workflows. Leveraging the power of deep learning, this study introduces a pioneering approach: a hybrid neural network model merging convolutional and Long Short-Term Memory (LSTM) RNN layers. Focused on effective porosity modeling for the Ghar Member of the Asmari Formation in western Iran, the study utilizes post-stack seismic data and well-log information. By effectively deciphering spatio-temporal information within the data, our methodology allows for spatially aware predictions of effective porosity values, a capability not addressed by previous studies. The hybrid neural network model predicts effective porosity values for the entire reservoir, creating a 3D grid of porosity. It leverages CNN and RNN layers to decipher spatio-temporal information within the data, thereby enabling the model to make spatially aware predictions. The model achieved a mean squared error (MSE) of 0.005, generating clear 3D porosity models with greater detail compared to traditional machine learning and geostatistical methods. This innovative methodology represents a step forward in reservoir characterization, offering improved precision and efficiency. It holds promise for advancing oilfield development practices in the future. |
---|---|
ISSN: | 0891-2556 1878-5212 |
DOI: | 10.1007/s13146-024-00975-0 |