High order finite-difference ghost-point methods for elliptic problems in domains with curved boundaries
In this paper a fourth order finite difference ghost point method for the Poisson equation on regular Cartesian mesh is presented. The method can be considered the high order extension of the second ghost method introduced earlier by the authors. Three different discretizations are considered, which...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-05 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper a fourth order finite difference ghost point method for the Poisson equation on regular Cartesian mesh is presented. The method can be considered the high order extension of the second ghost method introduced earlier by the authors. Three different discretizations are considered, which differ in the stencil that discretizes the Laplacian and the source term. It is shown that only two of them provide a stable method. The accuracy of such stable methods are numerically verified on several test problems. |
---|---|
ISSN: | 2331-8422 |