Equidistribution of graphs of holomorphic correspondences

Let \(X\) be a compact Riemann surface. Let \(f\) be a holomorphic self-correspondence of \(X\) with dynamical degrees \(d_1\) and \(d_2\). Assume that \(d_1\neq d_2\) or \(f\) is non-weakly modular. We show that the graphs of the iterates \(f^n\) of \(f\) are equidistributed exponentially fast with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-12
1. Verfasser: Luo, Muhan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let \(X\) be a compact Riemann surface. Let \(f\) be a holomorphic self-correspondence of \(X\) with dynamical degrees \(d_1\) and \(d_2\). Assume that \(d_1\neq d_2\) or \(f\) is non-weakly modular. We show that the graphs of the iterates \(f^n\) of \(f\) are equidistributed exponentially fast with respect to a positive closed current in \(X\times X\).
ISSN:2331-8422