Equidistribution of graphs of holomorphic correspondences
Let \(X\) be a compact Riemann surface. Let \(f\) be a holomorphic self-correspondence of \(X\) with dynamical degrees \(d_1\) and \(d_2\). Assume that \(d_1\neq d_2\) or \(f\) is non-weakly modular. We show that the graphs of the iterates \(f^n\) of \(f\) are equidistributed exponentially fast with...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-12 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let \(X\) be a compact Riemann surface. Let \(f\) be a holomorphic self-correspondence of \(X\) with dynamical degrees \(d_1\) and \(d_2\). Assume that \(d_1\neq d_2\) or \(f\) is non-weakly modular. We show that the graphs of the iterates \(f^n\) of \(f\) are equidistributed exponentially fast with respect to a positive closed current in \(X\times X\). |
---|---|
ISSN: | 2331-8422 |