(L^1\)-Contraction Property of Entropy Solutions for Scalar Conservation Laws with Minimal Regularity Assumptions on the Flux

This paper is concerned with entropy solutions of scalar conservation laws of the form \(\partial_{t}u+\diver f=0\) in \(\mathbb{R}^d\times(0,\infty)\). The flux \(f=f(x,u)\) depends explicitly on the spatial variable \(x\). Using an extension of Kruzkov's method, we establish the \(L^1\)-contr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-05
1. Verfasser: Hashash, Paz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper is concerned with entropy solutions of scalar conservation laws of the form \(\partial_{t}u+\diver f=0\) in \(\mathbb{R}^d\times(0,\infty)\). The flux \(f=f(x,u)\) depends explicitly on the spatial variable \(x\). Using an extension of Kruzkov's method, we establish the \(L^1\)-contraction property of entropy solutions under minimal regularity assumptions on the flux.
ISSN:2331-8422