(L^1\)-Contraction Property of Entropy Solutions for Scalar Conservation Laws with Minimal Regularity Assumptions on the Flux
This paper is concerned with entropy solutions of scalar conservation laws of the form \(\partial_{t}u+\diver f=0\) in \(\mathbb{R}^d\times(0,\infty)\). The flux \(f=f(x,u)\) depends explicitly on the spatial variable \(x\). Using an extension of Kruzkov's method, we establish the \(L^1\)-contr...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-05 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper is concerned with entropy solutions of scalar conservation laws of the form \(\partial_{t}u+\diver f=0\) in \(\mathbb{R}^d\times(0,\infty)\). The flux \(f=f(x,u)\) depends explicitly on the spatial variable \(x\). Using an extension of Kruzkov's method, we establish the \(L^1\)-contraction property of entropy solutions under minimal regularity assumptions on the flux. |
---|---|
ISSN: | 2331-8422 |