On Efficient Maximum Likelihood Algorithm for Clutter Suppression

Nonside-looking mode for airborne radar system is important to detect targets. However, the nonlinear distribution of clutter results traditional space-time adaptive processing (STAP) performance degradation. To address the off-grid effect, an effective STAP algorithm is proposed. We first formulate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters 2024, Vol.31, p.1399-1403
Hauptverfasser: Zhang, Xinying, Wang, Tong, Wang, Degen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nonside-looking mode for airborne radar system is important to detect targets. However, the nonlinear distribution of clutter results traditional space-time adaptive processing (STAP) performance degradation. To address the off-grid effect, an effective STAP algorithm is proposed. We first formulate the block-Toeplitz structured clutter covariance matrix (CCM) recovery problem using the stochastic maximum likelihood (ML) criterion. Then, we employ the majorization-minimization (MM) frame to solve the non-convex ML optimization problem. Finally, extensive simulation results evidence the performance of our method.
ISSN:1070-9908
1558-2361
DOI:10.1109/LSP.2024.3399631