Large-Scale and Simple Synthesis of NiFe(OH)x Electrode Derived from Raney Ni Precursor for Efficient Alkaline Water Electrolyzer

Water electrolysis is a crucial technology in the production of hydrogen energy. Due to the escalating industrial demand for green hydrogen, the required electrode size for a traditional alkaline water electrolyzer has been increasing. Numerous studies have focused on developing highly active oxygen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Catalysts 2024-05, Vol.14 (5), p.296
Hauptverfasser: Li, Tianshui, Liu, Wei, Xin, Huijun, Sha, Qihao, Xu, Haijun, Kuang, Yun, Sun, Xiaoming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Water electrolysis is a crucial technology in the production of hydrogen energy. Due to the escalating industrial demand for green hydrogen, the required electrode size for a traditional alkaline water electrolyzer has been increasing. Numerous studies have focused on developing highly active oxygen evolution reaction (OER) catalysts for water electrolysis. However, there remains a significant gap between the microscale synthesis of catalysts in laboratory settings and the macroscale preparation required for industrial scenarios. This challenge is particularly pronounced in the synthesis of sizable self-supported electrodes. In this work, we employed a commercially available Raney Ni-coated Ni mesh as a precursor material to fabricate a self-supported NiFe(OH)x@Raney Ni anode with a substantial dimension exceeding 300 mm through a straightforward immersion technique. The as-prepared electrode exhibited remarkable electrocatalytic OER activity, as an overpotential of only 240 mV is required to achieve 10 mA cm−2. This performance is comparable to that of NiFe-LDHs synthesized via a hydrothermal method, which is difficult to scale up for industrial applications. Furthermore, the electrode demonstrated exceptional durability, maintaining stable operation for over 100 h at a current density of 500 mA cm−2. The large-scale electrode displayed consistent overpotentials across various areas, indicating uniform catalytic activity. When integrated into an alkaline water electrolysis device, it delivered an average cell voltage of 1.80 V at 200 mA cm−2 and achieved a direct current hydrogen production energy consumption as low as 4.3 kWh/Nm3. These findings underline the suitability of electrodes for industrial scale applications, offering a promising alternative for energy-efficient hydrogen production.
ISSN:2073-4344
2073-4344
DOI:10.3390/catal14050296