New Composites Based on Closed-Cell Polyurethane Foam and Natural Nanomaterials
The feasibility of use of natural nanomaterials, namely, natural aluminosilicate (halloysite) nanotubes and nanocellulose, as modifying additives to commercial polyurethane foam to vary fire resistance and mechanical properties was studied. Series of composite polyurethane foams containing various w...
Gespeichert in:
Veröffentlicht in: | Chemistry and technology of fuels and oils 2024-05, Vol.60 (2), p.258-262 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The feasibility of use of natural nanomaterials, namely, natural aluminosilicate (halloysite) nanotubes and nanocellulose, as modifying additives to commercial polyurethane foam to vary fire resistance and mechanical properties was studied. Series of composite polyurethane foams containing various weight proportions of the modifying additives were obtained via in situ polymerization. The effect of the additives on the polyurethane foam structure, compressibility, and fire resistance was studied. It was observed that introduction of additives into polyurethane foam leads to change of the average pore size and reduction of foams compressibility. However, once the the maximum rigidity of the foam composites was reached, further increase of additive content causes regression of this characteristic. It was also confirmed that increasing additive content positively affects the fire resistance of the produced composites. |
---|---|
ISSN: | 0009-3092 1573-8310 |
DOI: | 10.1007/s10553-024-01678-x |