Experimental concept validation of a proton therapy range verification system using scattered proton measurements

In recent years, the application of positron emission tomography (PET) for the dose range verification of proton therapy has been proposed. However, the positron distribution is determined by the nuclear reaction cross section; hence, PET may not accurately reflect the dose range primarily influence...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2024-05, Vol.124 (21)
Hauptverfasser: Sato, S., Yokokawa, H., Sagisaka, M., Okazaki, Y., Iwashita, R., Yoshida, S., Tanaka, K. S., Yamamoto, S., Yamashita, T., Kobashi, Y., Kataoka, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 21
container_start_page
container_title Applied physics letters
container_volume 124
creator Sato, S.
Yokokawa, H.
Sagisaka, M.
Okazaki, Y.
Iwashita, R.
Yoshida, S.
Tanaka, K. S.
Yamamoto, S.
Yamashita, T.
Kobashi, Y.
Kataoka, J.
description In recent years, the application of positron emission tomography (PET) for the dose range verification of proton therapy has been proposed. However, the positron distribution is determined by the nuclear reaction cross section; hence, PET may not accurately reflect the dose range primarily influenced by ionization. Consequently, a proton dose range verification system based on scattered proton measurements has been suggested owing to the similarity in the reaction cross section between Rutherford scattering and ionization. While previous investigations have only verified the feasibility of dose range estimation through simple simulations, the objective of this study is to demonstrate this feasibility through experimental investigation. In this paper, we established an experimental framework for capturing scattered protons and introduced an algorithm that compares measured signal patterns with a reference database to estimate the dose range. A therapeutic beam was irradiated onto the abdominal region of a human phantom, and scattered protons were measured using scintillation detectors placed on the phantom surface. Consequently, the dose range was estimated with error margins of 4.22 ± 3.68 and 0.60 ± 1.03 mm along the beam axis and perpendicular directions to the Bragg peak, respectively. While providing the same level of Bragg peak positioning accuracy as conventional methods, our system features small size, cost-effectiveness, and system simplicity. One notable limitation of our method is the challenge in achieving precise detector positioning, which is crucial for accurate dose range estimation. Future research will focus on improving detector-position accuracy and exploring advanced algorithms for signal analysis to further refine dose range estimations.
doi_str_mv 10.1063/5.0200467
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3058999890</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3058999890</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-20110652651657cbaf63ecd5a922e36257135c281f640e5ad0908066dcb7324e3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqWw4A8ssQIpZWzXTrxEVXlIldjA2nKdSUnVJqntVPTvcUnZspqHzsyduYTcMpgwUOJRToADTFV-RkYM8jwTjBXnZAQAIlNasktyFcI6lZILMSK7-XeHvt5iE-2GurZx2EW6t5u6tLFuG9pW1NLOtzHl8Qu97Q7U22aFdJ_mqtoNWDiEiFvah7pZ0ZCaET2Wf4NbtKH3eFQJ1-SispuAN6c4Jp_P84_Za7Z4f3mbPS0yx4s8ZhxYekhyJZmSuVvaSgl0pbSacxSKy5wJmVBWqSmgtCVoKECp0i1zwacoxuRu2Jtu2PUYolm3vW-SpBEgC611oSFR9wPlfBuCx8p0yQ3rD4aBOTpqpDk5mtiHgQ2ujr9v_wP_AFuDdsc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3058999890</pqid></control><display><type>article</type><title>Experimental concept validation of a proton therapy range verification system using scattered proton measurements</title><source>AIP Journals Complete</source><creator>Sato, S. ; Yokokawa, H. ; Sagisaka, M. ; Okazaki, Y. ; Iwashita, R. ; Yoshida, S. ; Tanaka, K. S. ; Yamamoto, S. ; Yamashita, T. ; Kobashi, Y. ; Kataoka, J.</creator><creatorcontrib>Sato, S. ; Yokokawa, H. ; Sagisaka, M. ; Okazaki, Y. ; Iwashita, R. ; Yoshida, S. ; Tanaka, K. S. ; Yamamoto, S. ; Yamashita, T. ; Kobashi, Y. ; Kataoka, J.</creatorcontrib><description>In recent years, the application of positron emission tomography (PET) for the dose range verification of proton therapy has been proposed. However, the positron distribution is determined by the nuclear reaction cross section; hence, PET may not accurately reflect the dose range primarily influenced by ionization. Consequently, a proton dose range verification system based on scattered proton measurements has been suggested owing to the similarity in the reaction cross section between Rutherford scattering and ionization. While previous investigations have only verified the feasibility of dose range estimation through simple simulations, the objective of this study is to demonstrate this feasibility through experimental investigation. In this paper, we established an experimental framework for capturing scattered protons and introduced an algorithm that compares measured signal patterns with a reference database to estimate the dose range. A therapeutic beam was irradiated onto the abdominal region of a human phantom, and scattered protons were measured using scintillation detectors placed on the phantom surface. Consequently, the dose range was estimated with error margins of 4.22 ± 3.68 and 0.60 ± 1.03 mm along the beam axis and perpendicular directions to the Bragg peak, respectively. While providing the same level of Bragg peak positioning accuracy as conventional methods, our system features small size, cost-effectiveness, and system simplicity. One notable limitation of our method is the challenge in achieving precise detector positioning, which is crucial for accurate dose range estimation. Future research will focus on improving detector-position accuracy and exploring advanced algorithms for signal analysis to further refine dose range estimations.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0200467</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Bragg curve ; Feasibility ; Ionization ; Ionization cross sections ; Nuclear reactions ; Positron emission ; Protons ; Radiation therapy ; Scattering cross sections ; Signal analysis ; Verification</subject><ispartof>Applied physics letters, 2024-05, Vol.124 (21)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-20110652651657cbaf63ecd5a922e36257135c281f640e5ad0908066dcb7324e3</cites><orcidid>0000-0003-3070-5880 ; 0009-0009-0218-0264 ; 0000-0002-6781-3060 ; 0000-0003-2819-6415 ; 0000-0001-8247-2607 ; 0000-0001-6916-9654</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0200467$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,778,782,792,4500,27907,27908,76135</link.rule.ids></links><search><creatorcontrib>Sato, S.</creatorcontrib><creatorcontrib>Yokokawa, H.</creatorcontrib><creatorcontrib>Sagisaka, M.</creatorcontrib><creatorcontrib>Okazaki, Y.</creatorcontrib><creatorcontrib>Iwashita, R.</creatorcontrib><creatorcontrib>Yoshida, S.</creatorcontrib><creatorcontrib>Tanaka, K. S.</creatorcontrib><creatorcontrib>Yamamoto, S.</creatorcontrib><creatorcontrib>Yamashita, T.</creatorcontrib><creatorcontrib>Kobashi, Y.</creatorcontrib><creatorcontrib>Kataoka, J.</creatorcontrib><title>Experimental concept validation of a proton therapy range verification system using scattered proton measurements</title><title>Applied physics letters</title><description>In recent years, the application of positron emission tomography (PET) for the dose range verification of proton therapy has been proposed. However, the positron distribution is determined by the nuclear reaction cross section; hence, PET may not accurately reflect the dose range primarily influenced by ionization. Consequently, a proton dose range verification system based on scattered proton measurements has been suggested owing to the similarity in the reaction cross section between Rutherford scattering and ionization. While previous investigations have only verified the feasibility of dose range estimation through simple simulations, the objective of this study is to demonstrate this feasibility through experimental investigation. In this paper, we established an experimental framework for capturing scattered protons and introduced an algorithm that compares measured signal patterns with a reference database to estimate the dose range. A therapeutic beam was irradiated onto the abdominal region of a human phantom, and scattered protons were measured using scintillation detectors placed on the phantom surface. Consequently, the dose range was estimated with error margins of 4.22 ± 3.68 and 0.60 ± 1.03 mm along the beam axis and perpendicular directions to the Bragg peak, respectively. While providing the same level of Bragg peak positioning accuracy as conventional methods, our system features small size, cost-effectiveness, and system simplicity. One notable limitation of our method is the challenge in achieving precise detector positioning, which is crucial for accurate dose range estimation. Future research will focus on improving detector-position accuracy and exploring advanced algorithms for signal analysis to further refine dose range estimations.</description><subject>Algorithms</subject><subject>Bragg curve</subject><subject>Feasibility</subject><subject>Ionization</subject><subject>Ionization cross sections</subject><subject>Nuclear reactions</subject><subject>Positron emission</subject><subject>Protons</subject><subject>Radiation therapy</subject><subject>Scattering cross sections</subject><subject>Signal analysis</subject><subject>Verification</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqWw4A8ssQIpZWzXTrxEVXlIldjA2nKdSUnVJqntVPTvcUnZspqHzsyduYTcMpgwUOJRToADTFV-RkYM8jwTjBXnZAQAIlNasktyFcI6lZILMSK7-XeHvt5iE-2GurZx2EW6t5u6tLFuG9pW1NLOtzHl8Qu97Q7U22aFdJ_mqtoNWDiEiFvah7pZ0ZCaET2Wf4NbtKH3eFQJ1-SispuAN6c4Jp_P84_Za7Z4f3mbPS0yx4s8ZhxYekhyJZmSuVvaSgl0pbSacxSKy5wJmVBWqSmgtCVoKECp0i1zwacoxuRu2Jtu2PUYolm3vW-SpBEgC611oSFR9wPlfBuCx8p0yQ3rD4aBOTpqpDk5mtiHgQ2ujr9v_wP_AFuDdsc</recordid><startdate>20240520</startdate><enddate>20240520</enddate><creator>Sato, S.</creator><creator>Yokokawa, H.</creator><creator>Sagisaka, M.</creator><creator>Okazaki, Y.</creator><creator>Iwashita, R.</creator><creator>Yoshida, S.</creator><creator>Tanaka, K. S.</creator><creator>Yamamoto, S.</creator><creator>Yamashita, T.</creator><creator>Kobashi, Y.</creator><creator>Kataoka, J.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3070-5880</orcidid><orcidid>https://orcid.org/0009-0009-0218-0264</orcidid><orcidid>https://orcid.org/0000-0002-6781-3060</orcidid><orcidid>https://orcid.org/0000-0003-2819-6415</orcidid><orcidid>https://orcid.org/0000-0001-8247-2607</orcidid><orcidid>https://orcid.org/0000-0001-6916-9654</orcidid></search><sort><creationdate>20240520</creationdate><title>Experimental concept validation of a proton therapy range verification system using scattered proton measurements</title><author>Sato, S. ; Yokokawa, H. ; Sagisaka, M. ; Okazaki, Y. ; Iwashita, R. ; Yoshida, S. ; Tanaka, K. S. ; Yamamoto, S. ; Yamashita, T. ; Kobashi, Y. ; Kataoka, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-20110652651657cbaf63ecd5a922e36257135c281f640e5ad0908066dcb7324e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Bragg curve</topic><topic>Feasibility</topic><topic>Ionization</topic><topic>Ionization cross sections</topic><topic>Nuclear reactions</topic><topic>Positron emission</topic><topic>Protons</topic><topic>Radiation therapy</topic><topic>Scattering cross sections</topic><topic>Signal analysis</topic><topic>Verification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sato, S.</creatorcontrib><creatorcontrib>Yokokawa, H.</creatorcontrib><creatorcontrib>Sagisaka, M.</creatorcontrib><creatorcontrib>Okazaki, Y.</creatorcontrib><creatorcontrib>Iwashita, R.</creatorcontrib><creatorcontrib>Yoshida, S.</creatorcontrib><creatorcontrib>Tanaka, K. S.</creatorcontrib><creatorcontrib>Yamamoto, S.</creatorcontrib><creatorcontrib>Yamashita, T.</creatorcontrib><creatorcontrib>Kobashi, Y.</creatorcontrib><creatorcontrib>Kataoka, J.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sato, S.</au><au>Yokokawa, H.</au><au>Sagisaka, M.</au><au>Okazaki, Y.</au><au>Iwashita, R.</au><au>Yoshida, S.</au><au>Tanaka, K. S.</au><au>Yamamoto, S.</au><au>Yamashita, T.</au><au>Kobashi, Y.</au><au>Kataoka, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental concept validation of a proton therapy range verification system using scattered proton measurements</atitle><jtitle>Applied physics letters</jtitle><date>2024-05-20</date><risdate>2024</risdate><volume>124</volume><issue>21</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>In recent years, the application of positron emission tomography (PET) for the dose range verification of proton therapy has been proposed. However, the positron distribution is determined by the nuclear reaction cross section; hence, PET may not accurately reflect the dose range primarily influenced by ionization. Consequently, a proton dose range verification system based on scattered proton measurements has been suggested owing to the similarity in the reaction cross section between Rutherford scattering and ionization. While previous investigations have only verified the feasibility of dose range estimation through simple simulations, the objective of this study is to demonstrate this feasibility through experimental investigation. In this paper, we established an experimental framework for capturing scattered protons and introduced an algorithm that compares measured signal patterns with a reference database to estimate the dose range. A therapeutic beam was irradiated onto the abdominal region of a human phantom, and scattered protons were measured using scintillation detectors placed on the phantom surface. Consequently, the dose range was estimated with error margins of 4.22 ± 3.68 and 0.60 ± 1.03 mm along the beam axis and perpendicular directions to the Bragg peak, respectively. While providing the same level of Bragg peak positioning accuracy as conventional methods, our system features small size, cost-effectiveness, and system simplicity. One notable limitation of our method is the challenge in achieving precise detector positioning, which is crucial for accurate dose range estimation. Future research will focus on improving detector-position accuracy and exploring advanced algorithms for signal analysis to further refine dose range estimations.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0200467</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3070-5880</orcidid><orcidid>https://orcid.org/0009-0009-0218-0264</orcidid><orcidid>https://orcid.org/0000-0002-6781-3060</orcidid><orcidid>https://orcid.org/0000-0003-2819-6415</orcidid><orcidid>https://orcid.org/0000-0001-8247-2607</orcidid><orcidid>https://orcid.org/0000-0001-6916-9654</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2024-05, Vol.124 (21)
issn 0003-6951
1077-3118
language eng
recordid cdi_proquest_journals_3058999890
source AIP Journals Complete
subjects Algorithms
Bragg curve
Feasibility
Ionization
Ionization cross sections
Nuclear reactions
Positron emission
Protons
Radiation therapy
Scattering cross sections
Signal analysis
Verification
title Experimental concept validation of a proton therapy range verification system using scattered proton measurements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T17%3A31%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20concept%20validation%20of%20a%20proton%20therapy%20range%20verification%20system%20using%20scattered%20proton%20measurements&rft.jtitle=Applied%20physics%20letters&rft.au=Sato,%20S.&rft.date=2024-05-20&rft.volume=124&rft.issue=21&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0200467&rft_dat=%3Cproquest_cross%3E3058999890%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3058999890&rft_id=info:pmid/&rfr_iscdi=true