Primitive Elements of Free Non-associative Algebras over Finite Fields

The representation of elements of free non-associative algebras as a set of multidimensional tables of coefficients is defined. An operation for finding partial derivatives for elements of free non-associative algebras in the same form is considered. Using this representation, a criterion of primiti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Programming and computer software 2024-04, Vol.50 (2), p.180-187
Hauptverfasser: Maisuradze, M. V., Mikhalev, A. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The representation of elements of free non-associative algebras as a set of multidimensional tables of coefficients is defined. An operation for finding partial derivatives for elements of free non-associative algebras in the same form is considered. Using this representation, a criterion of primitivity for elements of lengths 2 and 3 in terms of matrix ranks, as well as a primitivity test for elements of arbitrary length, is derived. This test makes it possible to estimate the number of primitive elements in free non-associative algebras with two generators over a finite field. The proposed representation allows us to optimize algorithms for symbolic computations with primitive elements. Using these algorithms, we find the number of primitive elements of length 4 in a free non-associative algebra of rank 2 over a finite field.
ISSN:0361-7688
1608-3261
DOI:10.1134/S0361768824020117